Advertisement

Genetic Programming Based Approach for Synchronization with Parameter Mismatches in EEG

  • Dilip P. Ahalpara
  • Siddharth Arora
  • M. S. Santhanam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5481)

Abstract

Effects of parameter mismatches in synchronized time series are studied first for an analytical non-linear dynamical system (coupled logistic map, CLM) and then in a real system (Electroencephalograph (EEG) signals). The internal system parameters derived from GP analysis are shown to be quite effective in understanding aspects of synchronization and non-synchronization in the two systems considered. In particular, GP is also successful in generating the CLM coupled equations to a very good accuracy with reasonable multi-step predictions. It is shown that synchronization in the above two systems is well understood in terms of parameter mismatches in the system equations derived by GP approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ding, M.L., Ding, E.L., Ditto, W.L., Gluckman, B., In, V., Peng, J.H., Spano, M.L., Yang, W.M.: Control and Synchronization of Chaos in High Dimensional Systems: Review of Some Recent Results. Chaos 7, 644–652 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Strogatz, S.H.: From Kuramoto to Crawford: Exploring the Onset of Synchroniztion in Populations of Coupled Oscillators. Physica D 143, 1–20 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The Synchronization of Chaotic Systems. Physics Reports - Review Section of Physics Letters 366, 1–101 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E 64, 061907 (2001)CrossRefGoogle Scholar
  6. 6.
    Fogel, D.B.: Evolutionary Computation, The Fossil Record. IEEE Press, Los Alamitos (1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. University of Michigan Press, Ann Arbor (1975)Google Scholar
  8. 8.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley Publication, Reading (1989)zbMATHGoogle Scholar
  9. 9.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)zbMATHGoogle Scholar
  10. 10.
    Szpiro, G.G.: Forecasting Chaotic Time Series With Genetic Algorithms. Physical Review E 55, 2557 (1997)CrossRefGoogle Scholar
  11. 11.
    Abarbanel, H., Brown, R., Sidorovich, J., Tsimring, L.: The Analysis of Observed Chaotic Data in Physical Systems. Rev. of Mod. Phys. 65, 1331 (1993)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ahalpara, D.P., Parikh, J.C.: Genetic Programming Based Approach for Modeling Time Series Data of Real Systems. International Journal of Modern Physics C 19(1), 63–91 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ahalpara, D.P., Panigrahi, P.K., Parikh, J.C.: Variations in Financial Time Series: Modelling Through Wavelets and Genetic Programming. In: Chatterjee, A., Chakrabarti, B.K. (eds.) Econophysics of Markets and Business Networks. Proceedings of the Econophys-Kolkata III, vol. 35. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Santhanam, M.S., Patra, P.K.: Statistics of Atmospheric Correlations. Phys. Rev. E64, 016102 (2001)Google Scholar
  15. 15.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Manimaran, P., Panigrahi, P.K., Parikh, J.C.: Multiresolution Analysis of Stock Market Price Fluctuations. Phys. Rev. E72, 046120 (2005)Google Scholar
  17. 17.
    Ahalpara, D.P., Parikh, J.C.: Modeling Time Series Data of Real Systems. International Journal of Modern Physics C 18(2), 235–252 (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn., p. 200. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  19. 19.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dilip P. Ahalpara
    • 1
  • Siddharth Arora
    • 2
  • M. S. Santhanam
    • 2
    • 3
  1. 1.Institute for Plasma ResearchGandhinagarIndia
  2. 2.Physical Research Laboratory, NavrangpuraAhmedabadIndia
  3. 3.Indian Institute of Science Education and Research, PashanPuneIndia

Personalised recommendations