Advertisement

Exploring Grammatical Evolution for Horse Gait Optimisation

  • James E. Murphy
  • Michael O’Neill
  • Hamish Carr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5481)

Abstract

Physics-based animal animations require data for realistic motion. This data is expensive to acquire through motion capture and inaccurate when estimated by an artist. Grammatical Evolution (GE) can be used to optimise pre-existing motion data or generate novel motions. Optimised motion data produces sustained locomotion in a physics-based model. To explore the use of GE for gait optimisation, the motion data of a walking horse, from a veterinary publication, is optimised for a physics-based horse model. The results of several grammars are presented and discussed. GE was found to be successful for optimising motion data using a grammar based on the concatenation of sinusoidal functions.

Keywords

Grammatical Evolution physics-based animation gait optimisation quadrupedal locomotion Fourier analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muybridge, E.: Horses and Other Animals in Motion. Dover Publications, New York (1985)Google Scholar
  2. 2.
    Back, W., Clayton, H.M.: Equine Locomotion. Harcourt Publishers (2001)Google Scholar
  3. 3.
    Alexander, R.M., Jayes, A.S.: A Dynamic Similarity Hypothesis for the Gaits of Quadrupedal Mammals. Journal of Zoology (London) 201, 135–152 (1983)CrossRefGoogle Scholar
  4. 4.
    Parent, R.: Computer Animation: Algorithms and Techniques. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco (2002)Google Scholar
  5. 5.
    Kiguchi, K., Kusumoto, Y., Watanabe, K., Izumi, K., Fukuda, T.: Energy-Optimal Gait Analysis of Quadruped Robots. In: Artificial Life and Robotics, vol. 6, pp. 120–125. Springer, Japan (2002)Google Scholar
  6. 6.
    Garder, L.M., Høvin, M.E.: Robot Gaits Evolved by Combining Genetic Algorithms and Binary Hill Climbing. In: Genetic and Evolutionary Computation Conference 2006, pp. 1165–1170. ACM, New York (2006)Google Scholar
  7. 7.
    Xu, K., Chen, X., Liu, W., Williams, M.: Legged Robot Gait Locus Generation Based on Genetic Algorithms. In: Proc. International Symposium on Practical Cognitive Agents and Robots, vol. 213, pp. 51–62. ACM, New York (2006)Google Scholar
  8. 8.
    Smith, R.: Open Dynamics Engine v0.5 User Guide (2006)Google Scholar
  9. 9.
    Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  10. 10.
    O’Neill, M., Ryan, C.: Grammatical Evolution. Genetic Programming Series. Kluwer Academic Publishers, Dordrecht (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    GEVA: Grammatical Evolution in Java, http://ncra.ucd.ie/geva
  12. 12.
    Murphy, J.E., Carr, H., O’Neill, M.: Grammatical Evolution for Gait Retargeting. In: Proc. Theory and Practice of Computer Graphics 2008. Eurographics, pp. 159–162 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • James E. Murphy
    • 1
  • Michael O’Neill
    • 1
  • Hamish Carr
    • 1
  1. 1.University College Dublin, BelfieldDublin 4Ireland

Personalised recommendations