Advertisement

Matter Spacetimes

  • Carles BonaEmail author
  • Carles Bona-Casas
  • Carlos Palenzuela-Luque
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 783)

Up to now we have been considering mainly vacuum spacetimes. Although this has been useful to understand the dynamics of Einstein equations, most of the realistic scenarios involve some kind of matter. For instance, at large scales we have cosmological models, based on the isotropic distribution of dust (i.e., non-interacting particles). At intermediate scales there are galaxy models for dark matter, which has been modeled by using either dust or scalar fields. A small-scale approach would include all types of astrophysical compact objects and the dynamics related to them; binary star evolution, core collapse, accretion disks, etc.

Keywords

Black Hole Neutron Star Energy Tensor Alfven Wave Magnetosonic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).CrossRefADSGoogle Scholar
  2. 2.
    D. J. Kaup, Phys. Rev. 172, 1331 (1968).CrossRefADSGoogle Scholar
  3. 3.
    S. H. Hawley and M. W. Choptuik, Phys. Rev. D62, 104024 (2000).ADSGoogle Scholar
  4. 4.
    G. Lemaitre, Rev. Mod. Phys. 21, 357 (1949).zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Veterling, Numerical Recipes, Cambridge University Press, Cambridge (1989).zbMATHGoogle Scholar
  6. 6.
    K. W. Lai, Ph. D. Thesis, University of British Columbia (2004), gr-qc/0410040.Google Scholar
  7. 7.
    M. Colpi, S. L. Shapiro and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    K. O. Friedrichs, Commun. Math. Phys. 27, 749–808 (1974).zbMATHMathSciNetGoogle Scholar
  9. 9.
    A. M. Anile, Relativistic Fluids and Magneto-Fluids: With Applications in Astrophysics and Plasma Physics, Cambridge Monographs on Mathematical Physics (1989).Google Scholar
  10. 10.
    J. A. Font, J. A. Ibañez, J. M. Marti and A. Marquina, Astron. Astrophys. 282, 304–314 (1994).ADSGoogle Scholar
  11. 11.
    F. Banyuls et al., Astrophys. J. 476, 221–231, (1997).CrossRefADSGoogle Scholar
  12. 12.
    J. Read, B. D. Lackey, B. J. Owen and J. Friedman, ArXiv:0812.2163 (2008).Google Scholar
  13. 13.
    J. A. Font, Numerical hydrodynamics and magnetohydrodynamics in general relativity. Liv. Rev. Relat. 11 (2008). www.livingreviews.org/lrr-2008–7
  14. 14.
    C. Kittel, Quantum Theory of Solids, Wiley, New York (1987).Google Scholar
  15. 15.
    J. D. Bekenstein and E. Oron, Phys. Rev. D18, 1809 (1978).ADSGoogle Scholar
  16. 16.
    G. Q. Chen, D. Levermore and T. P. Liu, Comm. Pure Appl. Math. 47, 787–830 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    T. Leismann, L. Aloy, M. A. Anton, E. Muller, J. M. Marti, J. A. Miralles and J. A. Ibañez, Astron. Astrophys. 436, 503, (2005).CrossRefADSGoogle Scholar
  18. 18.
    E. W. Mielke and F. E. Schunck, Class. Quantum. Grav. 20, R301 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    E. W. Mielke, B. Fuchs and F. E. Schunck, Proceedings of the 10th Marcel Grossmann Meeting (2006). astro-ph/0608526.Google Scholar
  20. 20.
    P. Jetzer, Phys. Rep. 220, 163 (1992).CrossRefADSGoogle Scholar
  21. 21.
    F. S. Guzman Phys. Rev. D73, 021501(R), (2006).ADSGoogle Scholar
  22. 22.
    J. Lee and I. Koh, Phys. Rev. D53, 2236–2239 (1996).ADSGoogle Scholar
  23. 23.
    F. E. Schunck and D. F. Torres, Int. J. Mod. Phys. D9, 601–618 (2000).ADSGoogle Scholar
  24. 24.
    D. Clowe et al. Astrophys. J. 648, L109–L113 (2006).CrossRefADSGoogle Scholar
  25. 25.
    J. Balakrishna, Ph. D. Thesis. Washington University (1999). gr-qc/9906110.Google Scholar
  26. 26.
    C. Palenzuela, I. Olabarrieta, L. Lehner and S. Liebling, Phys. Rev. D75, 064005 (2007).ADSGoogle Scholar
  27. 27.
    C. Palenzuela, L. Lehner and S. Liebling, Phys. Rev. D77, 044036 (2008).ADSGoogle Scholar
  28. 28.
    M. Shibata and K. Uryu, Phys. Rev. D61, 064001 (2000).ADSGoogle Scholar
  29. 29.
    S. L. Shapiro, Phys. Rev. D58, 103002, (1998).ADSGoogle Scholar
  30. 30.
    M. Shibata, K. Taniguchi and K. Uryu, Phys. Rev. D71, 084021 (2005).ADSGoogle Scholar
  31. 31.
    M. Anderson et al., Phys. Rev. D77, 024006 (2008).ADSGoogle Scholar
  32. 32.
    T. Yamamoto, M. Shibata and K. Taniguchi, Phys. Rev. D78, 064054 (2008).ADSGoogle Scholar
  33. 33.
    L. Baiotti, B. Giacomazzo and L. Rezzolla, Phys. Rev. D78, 084033 (2008).ADSGoogle Scholar
  34. 34.
    Z. B. Etienne et al., Phys. Rev. D77, 084002 (2008).ADSGoogle Scholar
  35. 35.
    M. Anderson et al., Phys. Rev. Lett. 100, 191101 (2008).CrossRefADSGoogle Scholar
  36. 36.
    L. Baiotti, B. Giacomazzo and L. Rezzolla, Phys. Rev. D (2009).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carles Bona
    • 1
    Email author
  • Carles Bona-Casas
    • 1
  • Carlos Palenzuela-Luque
    • 2
  1. 1.Departament de FísicaUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut)GolmGermany

Personalised recommendations