Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 783))

  • 1519 Accesses

Up to now we have been considering mainly vacuum spacetimes. Although this has been useful to understand the dynamics of Einstein equations, most of the realistic scenarios involve some kind of matter. For instance, at large scales we have cosmological models, based on the isotropic distribution of dust (i.e., non-interacting particles). At intermediate scales there are galaxy models for dark matter, which has been modeled by using either dust or scalar fields. A small-scale approach would include all types of astrophysical compact objects and the dynamics related to them; binary star evolution, core collapse, accretion disks, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).

    Article  ADS  Google Scholar 

  2. D. J. Kaup, Phys. Rev. 172, 1331 (1968).

    Article  ADS  Google Scholar 

  3. S. H. Hawley and M. W. Choptuik, Phys. Rev. D62, 104024 (2000).

    ADS  Google Scholar 

  4. G. Lemaitre, Rev. Mod. Phys. 21, 357 (1949).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Veterling, Numerical Recipes, Cambridge University Press, Cambridge (1989).

    MATH  Google Scholar 

  6. K. W. Lai, Ph. D. Thesis, University of British Columbia (2004), gr-qc/0410040.

    Google Scholar 

  7. M. Colpi, S. L. Shapiro and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  8. K. O. Friedrichs, Commun. Math. Phys. 27, 749–808 (1974).

    MATH  MathSciNet  Google Scholar 

  9. A. M. Anile, Relativistic Fluids and Magneto-Fluids: With Applications in Astrophysics and Plasma Physics, Cambridge Monographs on Mathematical Physics (1989).

    Google Scholar 

  10. J. A. Font, J. A. Ibañez, J. M. Marti and A. Marquina, Astron. Astrophys. 282, 304–314 (1994).

    ADS  Google Scholar 

  11. F. Banyuls et al., Astrophys. J. 476, 221–231, (1997).

    Article  ADS  Google Scholar 

  12. J. Read, B. D. Lackey, B. J. Owen and J. Friedman, ArXiv:0812.2163 (2008).

    Google Scholar 

  13. J. A. Font, Numerical hydrodynamics and magnetohydrodynamics in general relativity. Liv. Rev. Relat. 11 (2008). www.livingreviews.org/lrr-2008–7

  14. C. Kittel, Quantum Theory of Solids, Wiley, New York (1987).

    Google Scholar 

  15. J. D. Bekenstein and E. Oron, Phys. Rev. D18, 1809 (1978).

    ADS  Google Scholar 

  16. G. Q. Chen, D. Levermore and T. P. Liu, Comm. Pure Appl. Math. 47, 787–830 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Leismann, L. Aloy, M. A. Anton, E. Muller, J. M. Marti, J. A. Miralles and J. A. Ibañez, Astron. Astrophys. 436, 503, (2005).

    Article  ADS  Google Scholar 

  18. E. W. Mielke and F. E. Schunck, Class. Quantum. Grav. 20, R301 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  19. E. W. Mielke, B. Fuchs and F. E. Schunck, Proceedings of the 10th Marcel Grossmann Meeting (2006). astro-ph/0608526.

    Google Scholar 

  20. P. Jetzer, Phys. Rep. 220, 163 (1992).

    Article  ADS  Google Scholar 

  21. F. S. Guzman Phys. Rev. D73, 021501(R), (2006).

    ADS  Google Scholar 

  22. J. Lee and I. Koh, Phys. Rev. D53, 2236–2239 (1996).

    ADS  Google Scholar 

  23. F. E. Schunck and D. F. Torres, Int. J. Mod. Phys. D9, 601–618 (2000).

    ADS  Google Scholar 

  24. D. Clowe et al. Astrophys. J. 648, L109–L113 (2006).

    Article  ADS  Google Scholar 

  25. J. Balakrishna, Ph. D. Thesis. Washington University (1999). gr-qc/9906110.

    Google Scholar 

  26. C. Palenzuela, I. Olabarrieta, L. Lehner and S. Liebling, Phys. Rev. D75, 064005 (2007).

    ADS  Google Scholar 

  27. C. Palenzuela, L. Lehner and S. Liebling, Phys. Rev. D77, 044036 (2008).

    ADS  Google Scholar 

  28. M. Shibata and K. Uryu, Phys. Rev. D61, 064001 (2000).

    ADS  Google Scholar 

  29. S. L. Shapiro, Phys. Rev. D58, 103002, (1998).

    ADS  Google Scholar 

  30. M. Shibata, K. Taniguchi and K. Uryu, Phys. Rev. D71, 084021 (2005).

    ADS  Google Scholar 

  31. M. Anderson et al., Phys. Rev. D77, 024006 (2008).

    ADS  Google Scholar 

  32. T. Yamamoto, M. Shibata and K. Taniguchi, Phys. Rev. D78, 064054 (2008).

    ADS  Google Scholar 

  33. L. Baiotti, B. Giacomazzo and L. Rezzolla, Phys. Rev. D78, 084033 (2008).

    ADS  Google Scholar 

  34. Z. B. Etienne et al., Phys. Rev. D77, 084002 (2008).

    ADS  Google Scholar 

  35. M. Anderson et al., Phys. Rev. Lett. 100, 191101 (2008).

    Article  ADS  Google Scholar 

  36. L. Baiotti, B. Giacomazzo and L. Rezzolla, Phys. Rev. D (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Bona .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bona, C., Bona-Casas, C., Palenzuela-Luque, C. (2009). Matter Spacetimes. In: Elements of Numerical Relativity and Relativistic Hydrodynamics. Lecture Notes in Physics, vol 783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01164-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01164-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01163-4

  • Online ISBN: 978-3-642-01164-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics