Black Hole Simulations

  • Carles BonaEmail author
  • Carles Bona-Casas
  • Carlos Palenzuela-Luque
Part of the Lecture Notes in Physics book series (LNP, volume 783)

The essential ingredients of a numerical relativity code are the evolution formalism and the numerical scheme. We have already discussed a couple of well-tested evolution formalisms: the generalized harmonic one and Z4, from which BSSN can be derived by symmetry breaking. We have also presented a robust, cost-efficient, finite-difference scheme (FDOC), which is able to evolve smooth solutions, and a more sophisticated alternative (MUSCL), suitable for weak solutions.


Black Hole Apparent Horizon Lapse Function Momentum Constraint Binary Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. B. Cook, Initial data for numerical relativity, Liv. Rev. Relat.
  2. 2.
    J. Thornburg, Event and apparent horizon finders for 3 + 1 numerical relativity. Liv. Rev.Relat.–3
  3. 3.
    A. Lichnerowicz, J. Math. Pures et Appl. 23, 37 (1944).zbMATHMathSciNetGoogle Scholar
  4. 4.
    R. Beig and N. O Murchadha, Class. Quantum Grav. 11, 419 (1994).zbMATHCrossRefADSGoogle Scholar
  5. 5.
    R. Beig and N. O Murchadha, Class. Quantum Grav. 13, 739 (1996).zbMATHCrossRefADSGoogle Scholar
  6. 6.
    S. Brandt and B. Brügmann, Phys. Rev. Lett. 78, 3606 (1997).CrossRefADSGoogle Scholar
  7. 7.
    F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M. Campanelli, C. O. Lousto, P. Marronetti and Y. Zlochower, Phys. Rev. Lett. 96,111101 (2006).CrossRefADSGoogle Scholar
  9. 9.
    J. G. Baker et al., Phys. Rev. Lett. 96, 111102 (2006).CrossRefADSGoogle Scholar
  10. 10.
    P. Anninos et al., Phys. Rev. Lett. 74, 630 (1995).CrossRefADSGoogle Scholar
  11. 11.
    J. Libson et al., Phys. Rev. D53, 4335 (1996).ADSMathSciNetGoogle Scholar
  12. 12.
    A. Arbona et al., Phys. Rev. D57, 2397 (1998).ADSMathSciNetGoogle Scholar
  13. 13.
    D. Alic, C. Bona and C. Bona-Casas, Phys. Rev. D (2009). ArXiv:0811.1691Google Scholar
  14. 14.
    D. Brown et al., Phys. Rev. D76, 081503(R) (2007).ADSGoogle Scholar
  15. 15.
    J. Thornburg, Class. Quan. Grav. 4, (1987).Google Scholar
  16. 16.
    P. Anninos et al., Phys. Rev. Lett. 71, 2851 (1993).CrossRefADSGoogle Scholar
  17. 17.
    C. Bona, J. Massó, E. Seidel and J. Stela, Phys. Rev. Lett. 75, 600 (1995).CrossRefADSGoogle Scholar
  18. 18.
    C. Bona, J. Massó, E. Seidel and J. Stela, Phys. Rev. D56, 3405 (1997).ADSGoogle Scholar
  19. 19.
    E. Seidel and W. M. Suen, Phys. Rev. Lett. 69, 1845 (1992).CrossRefADSGoogle Scholar
  20. 20.
    B. Szilágyi, Class. Quantum Grav. 24, S275–S293 (2007).zbMATHCrossRefADSGoogle Scholar
  21. 21.
    H. P. Pfeiffer, Class. Quantum Grav. 24, S59–S81 (2007).zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    F. Pretorius, Class. Quantum Grav. 23, S529 (2006).zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    R. A. Matzner, M. F. Huq and D. Shoemaker, Phys. Rev. D59, 024015 (1998).ADSMathSciNetGoogle Scholar
  24. 24.
    C. Bona and J. Massó, Phys. Rev. D38, 2419 (1988).ADSGoogle Scholar
  25. 25.
    F. Estabrook et al., Phys. Rev. D7, 2814 (1973).ADSMathSciNetGoogle Scholar
  26. 26.
    L. Smarr and J. W. York, Phys. Rev. D17, 1945 (1978).ADSMathSciNetGoogle Scholar
  27. 27.
    L. Smarr and J. W. York, Phys. Rev. D17, 2529 (1978).ADSMathSciNetGoogle Scholar
  28. 28.
    B. Reimann, M. Alcubierre, J. A. González and D. Núñez, Phys. Rev. D71, 064021 (2005).ADSGoogle Scholar
  29. 29.
    M. Alcubierre et al., Phys. Rev. D72, 124018 (2005).ADSMathSciNetGoogle Scholar
  30. 30.
  31. 31.
    B. Gustafson, H. O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods, Wiley, New York (1995).Google Scholar
  32. 32.
    M. J. Berger and R. J. LeVeque, SIAM J. Numer. Anal. 35, 2298 (1998).Google Scholar
  33. 33.
    F. Pretorius and L. Lehner, J. Comput. Phys. 198, 10 (2004).zbMATHCrossRefADSGoogle Scholar
  34. 34.
    H. Friedrich, ‘Conformal Einstein evolution’ in The Conformal Structure of Space-Times: Geometry, Analysis, Numerics, ed. by J. Frauendiener and H. Friedrich, Springer Lecture Notes in Physics, Vol 604, pp. 1–50, Springer, Berlin Heidelberg New York (2002).Google Scholar
  35. 35.
    J. Baker, B. Brügmann, M. Campanelli and C. O. Lousto, Class. Quantum Grav. 17, L149 (2000).zbMATHCrossRefADSGoogle Scholar
  36. 36.
    J. Baker, M. Campanelli and C. O. Lousto, Phys. Rev. D65, 044001 (2002).ADSGoogle Scholar
  37. 37.
    M. Alcubierre and B. Brügmann, Phys. Rev. D63, 104006 (2001).ADSGoogle Scholar
  38. 38.
    M. Alcubierre et al., Phys. Rev. D67, 084023 (2003).ADSMathSciNetGoogle Scholar
  39. 39.
    L. Lindblom and M. A. Scheel, Phys. Rev. D67, 124005 (2003).ADSMathSciNetGoogle Scholar
  40. 40.
    C. Bona, J. Carot and C. Palenzuela-Luque, Phys. Rev. D72, 124010 (2005).ADSMathSciNetGoogle Scholar
  41. 41.
  42. 42.
    K. Dantzmann and A. Rudiger, Class. Quantum Grav. 20, S1 (2003).CrossRefADSGoogle Scholar
  43. 43.
    C. Misner and J. Wheeler, Ann. Phys. (N.Y.) 2, 525 (1957).zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    D. R. Brill and R. W. Lindquist, Phys. Rev. 131, 471 (1963).zbMATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    J. M. Bowen and J. W. York, Phys. Rev. D21, 2047 (1980).ADSGoogle Scholar
  46. 46.
    E. Bonning, P. Marronetti, D. Neilsen and R. A. Matzner, Phys. Rev. D68, 044019 (2003).ADSMathSciNetGoogle Scholar
  47. 47.
    P. Marronetti et al., Phys. Rev. D62, 024017 (2000).ADSGoogle Scholar
  48. 48.
    L. Blanchet, Phys. Rev. D68, 084002 (2003).ADSMathSciNetGoogle Scholar
  49. 49.
    W. Tichy, B. Brügmann, M. Campanelli and P. Diener, Phys. Rev. D67, 064008 (2003).ADSGoogle Scholar
  50. 50.
    S. Nissanke, Phys. Rev. D73, 124002 (2006).ADSGoogle Scholar
  51. 51.
    B. Brügmann, W. Tichy and N. Jansen, Phys. Rev. Lett. 92, 211101 (2004).CrossRefADSGoogle Scholar
  52. 52.
    F. Herrmann, I. Hinder, D. Shoemaker and P. Laguna, Class. Quantum Grav. 24, S33–S42 (2007).zbMATHCrossRefADSMathSciNetGoogle Scholar
  53. 53.
    J. G. Baker et al., Astrophys. J. Lett. 653, 93–96 (2006).CrossRefADSGoogle Scholar
  54. 54.
    A. Gopakumar, M. Hannam, S. Husa and B. Brügmann, Phys. Rev. D78, 064026 (2008).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carles Bona
    • 1
    Email author
  • Carles Bona-Casas
    • 1
  • Carlos Palenzuela-Luque
    • 2
  1. 1.Departament de FísicaUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut)GolmGermany

Personalised recommendations