Advertisement

Numerical Methods

  • Carles BonaEmail author
  • Carles Bona-Casas
  • Carlos Palenzuela-Luque
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 783)

A numerical relativity code consists in two main ingredients: the evolution system and the discretization algorithm. Up to now, we have focused in the evolution formalism. The strong hyperbolicity requirement is a requisite for a well-posed system at the continuum level. Also, the subsidiary system, governing constraint deviations, has been studied at the continuum level, where we have seen how the subset of true Einstein’s solutions can become an attractor for extended (constraint-violating) solutions.

Keywords

Weak Solution Finite Volume Method Contact Discontinuity Advection Equation Riemann Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. D. Lax, B. Wendroff, Commun. Pure Appl Math. 13, 217-237 (1960).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. W. MacCormack, AIAA Paper 69-354 (1969).Google Scholar
  3. 3.
    W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Veterling, Numerical Recipes, Cambridge University Press, Cambridge(1989).zbMATHGoogle Scholar
  4. 4.
    O. A. Liskovets, Journal of Differential Equations I, 1308-1323 (1965).Google Scholar
  5. 5.
    C.-W. Shu and S. Osher, J. Comp. Phys. 77, 439-471 (1988).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    B. Gustafson, H.O. Kreiss and J. Oliger, Time dependent problems and difference methods, Wiley, New York (1995).Google Scholar
  7. 7.
    C. Bona, C. Bona-Casas and J. Terrades, J. Comp. Phys. 228, 2266 (2009).zbMATHCrossRefADSGoogle Scholar
  8. 8.
    M. Alcubierre et al, Class. Quantum. Grav. 21, 589 (2004).zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
  10. 10.
    K. Kiuchi and H-A. Shinkai, Phys. Rev. D77, 044010 (2008).CrossRefADSGoogle Scholar
  11. 11.
    Y. Zlochower, J. G. Baker, M. Campanelli and C. O. Lousto, Phys. Rev. D72, 024021 (2005).CrossRefADSGoogle Scholar
  12. 12.
    R. J. LeVeque, Numerical methods for conservation laws, Birkhauser, Basel, (1992).zbMATHGoogle Scholar
  13. 13.
    S. K. Godunov, Math. Sbornik 47 271-306 (1959), translated US Joint Publ. Res. Service, JPRS 7226, (1969).Google Scholar
  14. 14.
    E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin Heidelberg (1997).zbMATHGoogle Scholar
  15. 15.
    C. Bona and J. Massó, Phys. Rev. Lett. 68, 1097 (1992).zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
  17. 17.
    M. A. Aloy, J. A. Pons and J. M. Ibáñez, Computer Physics Commun. 120 115 (1999).zbMATHCrossRefADSGoogle Scholar
  18. 18.
    V. V. Rusanov, J. Comput. Mat. Phys. USSR 1 267 (1961).MathSciNetGoogle Scholar
  19. 19.
    A. Harten, P. D. Lax and B. van Leer, SIAM Rev., 25, 35 (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    B. van Leer, J. Comput. Phys. 23, 276 (1977).CrossRefADSGoogle Scholar
  21. 21.
    B. van Leer, J. Comput. Phys. 32, 101 (1979).CrossRefADSGoogle Scholar
  22. 22.
    F. Banyuls, J. A. Font, J. M. Ibáñez, J. M. Martí, and J. A. Miralles, Astrophys. J. 476, 221 (1997).CrossRefADSGoogle Scholar
  23. 23.
    P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174 (1984).zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    A. Harten, J. Comput. Phys. 49, 357-393 (1983).zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    S. Osher and S. Chakravarthy, ICASE Report 84-44 (1984), IMA Volumes in Mathematics and its Applications, Vol 2, pp. 229-274. Springer-Verlag New York (1986).Google Scholar
  26. 26.
    C.-W. Shu, Math. Comput. 49, 105-121 (1987).zbMATHCrossRefGoogle Scholar
  27. 27.
    D. S. Balsara and Chi-Wang Shu, J. Comput. Phys. 160, 405-452 (2000).zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    G. A. Sod, J. Comput. Phys. 27, 1-31 (1978).zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    S. A. Orszag and C. M. Tang, J. Fluid Mech. 90, 129-143(1979).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carles Bona
    • 1
    Email author
  • Carles Bona-Casas
    • 1
  • Carlos Palenzuela-Luque
    • 2
  1. 1.Departament de FísicaUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut)GolmGermany

Personalised recommendations