Advertisement

Free Evolution

  • Carles BonaEmail author
  • Carles Bona-Casas
  • Carlos Palenzuela-Luque
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 783)

As we mentioned in the previous chapter, the ‘free evolution’ approach is by far the most commonly used today in numerical relativity codes. It consists in using just the evolution equations to compute the full set of dynamical quantities γ ij , K ij ). We have seen that the subset of evolution equations is not unique: evolution equations can be modified by adding constraints in many different ways. This implies that we must distinguish among different versions of free evolution, depending on the particular variant of the evolution equation which is selected in each case.

Keywords

Gauge Sector Extrinsic Curvature Gauge Parameter Numerical Dissipation Free Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bona, J. Massó, E. Seidel and J. Stela, Phys. Rev. Lett. 75, 600 (1995).CrossRefADSGoogle Scholar
  2. 2.
    H. O. Kreiss and J. Lorentz, Initial-Boundary Problems and the Navier-Stokes Equations, Academic Press, New York (1989).zbMATHGoogle Scholar
  3. 3.
    M. Alcubierre et al., Class. Quantum. Grav. 21, 589 (2004).zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Veterling, Numerical Recipes, Cambridge University Press, Cambridge (1989).zbMATHGoogle Scholar
  5. 5.
    L. Smarr and J. W. York, Phys. Rev. D17, 1945 (1978).ADSMathSciNetGoogle Scholar
  6. 6.
    L. Smarr and J. W. York, Phys. Rev. D17, 2529 (1978).ADSMathSciNetGoogle Scholar
  7. 7.
    J. Centrella, Phys. Rev. D21, 2776 (1980).ADSMathSciNetGoogle Scholar
  8. 8.
    T. De Donder, La Gravifique Einstenienne, Gauthier-Villars, Paris (1921).Google Scholar
  9. 9.
    T. De Donder, The Mathematical Theory of Relativity, Massachusetts Institute of Technology, Cambridge (1927).zbMATHGoogle Scholar
  10. 10.
    K. Lanczos, Ann. Phys. 13, 621 (1922).Google Scholar
  11. 11.
    K. Lanczos, Z. Phys. 23, 537 (1923).Google Scholar
  12. 12.
    V. A. Fock, The Theory of Space, Time and Gravitation, Pergamon, London (1959).zbMATHGoogle Scholar
  13. 13.
    C. Bona and J. Massó, Phys. Rev. Lett. 68, 1097 (1992).zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    T. Nakamura and K. Oohara, Frontiers in Numerical Relativity, ed. by C. R. Evans, L. S. Finn and D. Hobill, Cambridge University Press, Cambridge (1989).Google Scholar
  16. 16.
    M. Shibata and T. Nakamura, Phys. Rev. D52, 5428 (1995).ADSMathSciNetGoogle Scholar
  17. 17.
    T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D59, 024007 (1999).ADSMathSciNetGoogle Scholar
  18. 18.
    A. Arbona, C. Bona, J. Massó and J. Stela, Phys. Rev. D60, 104014 (1999).ADSGoogle Scholar
  19. 19.
    M. Alcubierre et al., Phys. Rev. D64, 061501 (2001).ADSMathSciNetGoogle Scholar
  20. 20.
    M. Alcubierre et al., Phys. Rev. Lett. 87, 271103 (2001).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    M. Alcubierre et al., Phys. Rev. D67, 084023 (2003).ADSMathSciNetGoogle Scholar
  22. 22.
    M. Campanelli, C. O. Lousto, P. Marronetti and Y. Zlochower, Phys. Rev. Lett. 96,111101 (2006).CrossRefADSGoogle Scholar
  23. 23.
    J. G. Baker et al., Phys. Rev. Lett. 96, 111102 (2006).CrossRefADSGoogle Scholar
  24. 24.
    C. Bona, T. Ledvinka and C. Palenzuela, Phys. Rev. D66, 084013 (2002).ADSMathSciNetGoogle Scholar
  25. 25.
    C. Bona, T. Ledvinka, C. Palenzuela and M. Žáček, Phys. Rev. D67, 104005 (2003).ADSGoogle Scholar
  26. 26.
    C. Bona, T. Ledvinka, C. Palenzuela and M. Žáček, Phys. Rev. D69, 064036 (2004).ADSGoogle Scholar
  27. 27.
    F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    O. Brodbeck, S. Frittelli, P. Huebner and O. A. Reula, J. Math. Phys. 40, 909 (1999).zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    C. Gundlach, G. Calabrese, I. Hinder and J. M. Martín-García, Class. Quantum Grav. 22, 3767 (2005).zbMATHCrossRefGoogle Scholar
  30. 30.
    R. Arnowit, S. Deser and C. W. Misner. Gravitation: An Introduction to Current Research, ed. by L. Witten, Wiley, New York (1962). gr-qc/0405109.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carles Bona
    • 1
    Email author
  • Carles Bona-Casas
    • 1
  • Carlos Palenzuela-Luque
    • 2
  1. 1.Departament de FísicaUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut)GolmGermany

Personalised recommendations