Advertisement

The Evolution Formalism

  • Carles BonaEmail author
  • Carles Bona-Casas
  • Carlos Palenzuela-Luque
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 783)

The general covariant approach to general relativity is not adapted to our experience from everyday life. The most intuitive concept is not that of spacetime geometry, but rather that of a time succession of space geometries. This ‘flowing geometries’ picture could be easily put into the computer, by discretizing the time coordinate, in the same way that the continuous time flow of the real life is coded in terms of a discrete set of photograms in a movie.

Keywords

Gravitational Wave Time Line Extrinsic Curvature Gravitational Radiation Evolution Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referecnes

  1. 1.
    G. Darmois, Les equations de la Gravitation Einsteinnienne, Memorial des Sciences Mathematiques 25, Gauthier-Villars, Paris (1927).Google Scholar
  2. 2.
    A. Lichnerowicz, J. Math. Pures et Appl. 23, 37 (1944).zbMATHMathSciNetGoogle Scholar
  3. 3.
    Y. Choquet-Bruhat, J. Rat. Mec. Anal. 5, 951 (1956).Google Scholar
  4. 4.
    A. Lichnerowicz, Studies in the History of General Relativity Series: Einstein Studies, Vol 3, ed. by J. Eisenstead and A. J. Kox, Birkhäuser, Basel (1992).Google Scholar
  5. 5.
    R. Arnowit, S. Deser and C. W. Misner. Gravitation: An Introduction to Current Research, ed. by L. Witten, Wiley, New York (1962). gr-qc/0405109.Google Scholar
  6. 6.
    R. Gomez et al., Phys. Rev. Lett. 80, 3915 (1998).CrossRefADSGoogle Scholar
  7. 7.
    M. Campanelli, C. O. Lousto, P. Marronetti and Y. Zlochower, Phys. Rev. Lett. 96,111101 (2006).CrossRefADSGoogle Scholar
  8. 8.
    J. G. Baker et al., Phys. Rev. Lett. 96, 111102 (2006).CrossRefADSGoogle Scholar
  9. 9.
    M. Alcubierre and B. Brügmann, Phys. Rev. D63, 104006 (2001).ADSGoogle Scholar
  10. 10.
    M. Alcubierre et al., Phys. Rev. D67, 084023 (2003).ADSMathSciNetGoogle Scholar
  11. 11.
    L. Lindblom and M. A. Scheel, Phys. Rev. D67, 124005 (2003).ADSMathSciNetGoogle Scholar
  12. 12.
    F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    C. Gundlach, G. Calabrese, I. Hinder and J. M. Martín-García, Class. Quantum Grav. 22, 3767 (2005).zbMATHCrossRefGoogle Scholar
  14. 14.
    J. Centrella, Phys. Rev. D21, 2776 (1980).ADSMathSciNetGoogle Scholar
  15. 15.
    F. Estabrook et al., Phys. Rev. D7, 2814 (1973).ADSMathSciNetGoogle Scholar
  16. 16.
    L. Smarr and J. W. York, Phys. Rev. D17, 1945 (1978).ADSMathSciNetGoogle Scholar
  17. 17.
    L. Smarr and J. W. York, Phys. Rev. D17, 2529 (1978).ADSMathSciNetGoogle Scholar
  18. 18.
    P. Anninos et al., Phys. Rev. Lett. 71, 2851 (1993).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carles Bona
    • 1
    Email author
  • Carles Bona-Casas
    • 1
  • Carlos Palenzuela-Luque
    • 2
  1. 1.Departament de FísicaUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut)GolmGermany

Personalised recommendations