Skip to main content

Flower-Related Fossils from the Jurassic

  • Chapter
  • First Online:
The Dawn Angiosperms

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 121))

Abstract

The Jurassic is an important period for the origin of angiosperms. Several reproductive organs have been excavated from the Jurassic strata in western Liaoning and Inner Mongolia, China. Schmeissneria, Xingxueanthus and Solaranthus are three female or bisexual organs of plants found in the Middle Jurassic in China and the Early Jurassic in Europe. All of them demonstrate the existence of enclosed ovule in the organ, satisfying the criterion for angiosperms. Among them, Schmeissneria is seen in both the Middle Jurassic in China and Early Jurassic in Europe, and thus sheds much more light on the origin and early evolution of angiosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CL, Bremer K, Friis EM (2005) Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. Am J Bot 92:1737–1748

    Google Scholar 

  • Pan K (1984) Notes on Jurassic precursors of angiosperms from Yanliao region of north China and the origin of angiosperms. Chin Sci Bull 29:958–959

    Google Scholar 

  • Krassilov VA, Bugdaeva EV (1988) Gnetalean plants from the Jurassic of Ust-Balej, East Siberia. Rev Palaeobot Palyn 53:359–376

    Google Scholar 

  • Chase MW (2004) Monocot relationships: an overview. Am J Bot 91:1645–1655

    Google Scholar 

  • Wcislo-Luraniec E (1992) A fructification of Stachyopitys preslii Schenk from the Lower Jurassic of Poland. Cour Forsch-Inst Senckenberg 147:247–253

    Google Scholar 

  • Nixon KC, Crepet WL, Stevenson D, Friis EM (1994) A reevaluation of seed plant phylogeny. Ann Miss Bot Gard 81:484–533

    Google Scholar 

  • Wang X, Duan S, Geng B, Cui J, Yang Y (2007b) Schmeissneria: a missing link to angiosperms? BMC Evol Biol 7:14

    Google Scholar 

  • Wang X, Duan S, Geng B, Cui J, Yang Y (2007c) Is Jurassic Schmeissneria an angiosperm? Acta Palaeont Sin 46:486–490

    Google Scholar 

  • Wing SL, Tiffney BH (1987) Interactions of angiosperms and herbivorous tetrapods through time. In: Friis EM, Chaloner WG, Crane PR, eds. The origin of the angiosperms and their biological consequences. Cambridge University Press, Cambridge

    Google Scholar 

  • Fagerlind F (1946) Strobilus und Blüte von Gnetum und die Moglichkeit aus ihrer Structur den Blütenbau der Angiospermen zu deuten. Ark Bot 33A:1–57

    Google Scholar 

  • Wang X, Zheng SL (2010) Whole fossil plants of Ephedra and their implications on the morphology, ecology and evolution of Ephedraceae (Gnetales). Chin Sci Bull 55:1511–1519

    Google Scholar 

  • Pan K (1996) A new species of Pterocarya (Juglandaceae) from Middle Jurassic of Yanliao region, north China. Rheedea 6:141–151

    Google Scholar 

  • Doyle JA (1978) Origin of angiosperms. Ann Rev Ecol Syst 9:365–392

    Google Scholar 

  • Retallack G, Dilcher DL (1981b) Arguments for a glossopterid ancestry of angiosperms. Paleobiology 7:54–67

    Google Scholar 

  • Friis EM, Crepet WL (1987) Time of appearance of floral features. In: Friis EM, Chaloner WG, Crane PR, eds. The origin of the angiosperms and their biological consequences. Cambridge University Press, Cambridge

    Google Scholar 

  • Puri V (1952) Placentation in angiosperms. Bot Rev 18:603–651

    Google Scholar 

  • Harris TM (1964) Caytoniales, cycadales & pteridosperms. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2000) Reproductive structure and organization of basal angiosperms from the Early Cretaceous (Barremian or Aptian) of Western Portugal. Intl J Plant Sci 161:169–182

    Google Scholar 

  • Yang Y (2001) Ontogenetic and metamorphic patterns of female reproductive organs of Ephedra sinica Stapf (Ephedraceae). Acta Bot Sin 43:1011–1017

    Google Scholar 

  • Wang X, Zheng SL, Jin JH (2010) Structure and relationships of Problematospermum, an enigmatic seed from the Jurassic of China. Intl J Plant Sci 171:447–456

    Google Scholar 

  • Biswas C, Johri BM (1997) The gymnosperms. Springer, Berlin

    Google Scholar 

  • Friedman WE, Ryerson KC (2009) Reconstructing the ancestral female gametophyte of angiosperms: insights from Amborella and other ancient lineages of flowering plants. Am J Bot 96:129–143

    Google Scholar 

  • Taylor TN, Archangelsky S (1985) The Cretaceous pteridosperms of Ruflorinia and Ktalenia and implication on cupule and carpel evolution. Am J Bot 72:1842–1853

    Google Scholar 

  • Heywood VH, ed (1979) Flowering plants of the world. Oxford University Press, Oxford

    Google Scholar 

  • Hoffmann R (2003) Why buy that theory. Am Sci 91:9–11

    Google Scholar 

  • Crane PR, Kenrick P (1997) Diverted development of reproductive organs: a source of morphological innovation in land plants. Plant Syst Evol 206:161–174

    Google Scholar 

  • Eriksson O, Friis EM, Pedersen KR, Crane PR (2000) Seed size and dispersal systems of Early Cretaceous angiosperms from Famalicao, Portugal. Intl J Plant Sci 161:319–329

    Google Scholar 

  • Kvacek J, Pacltov B (2001) Bayeritheca hughesii gen. et sp. nov., a new Eucommiidites-bearing pollen organ from the Cenomanian of Bohemia. Cret Res 22:695–704

    Google Scholar 

  • Hochuli PA, Feist-Burkhardt S (2004) A boreal early cradle of angiosperms? angiosperm-like pollen from the middle Triassic of the Barents Sea (Norway). J Micropalaeont 23:97–104

    Google Scholar 

  • Tahktajan A (1980) Outline of the classification of flowering plants (magnoliophyta). Bot Rev 46:225–359

    Google Scholar 

  • Mathews S (2009) Phylogenetic relationships among seed plants: persistent questions and the limits of molecular data. Am J Bot 96:228–236

    Google Scholar 

  • Krassilov VA (1972) Mesozoic flora of Bureya River, Ginkgoales and Czekanowskiales. Nauka, Moscow

    Google Scholar 

  • Prynada VD (1962) Mesozoic flora of the East Siberia and Trans-Baikal area. Gosgeoltekhizdat, Moscow

    Google Scholar 

  • Harris TM (1969) Bennettitales. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Tekleva MV, Krassilov VA (2009) Comparative pollen morphology and ultrastructure of modern and fossil gnetophytes. Rev Palaeobot Palyn 156:130–138

    Google Scholar 

  • Barrett SCH (2010) Darwin’s legacy: the forms, function and sexual diversity of flowers. Phil Trans R Soc B: Biol Sci 365:351–368

    Google Scholar 

  • Chamberlain CJ (1957) Gymnosperms, structure and evolution. Johnson Reprint Corporation, New York, NY

    Google Scholar 

  • Crane PR, Herendeen PS (2009) Bennettitales from the Grisethrope Bed (Middle Jurassic) at Cayton Bay, Yorkshire, UK. Am J Bot 96:284–295

    Google Scholar 

  • Berridge EM (1911) On some points of resemblance between gnetalean and bennettitean seeds. New Phytol 10:140–144

    Google Scholar 

  • Upchurch GRJ, Wolfe JA (1987) Mid-Cretaceous to Early Tertiary vegetation and climate: evidence from fossil leaves and woods. In: Friis EM, Chaloner WG, Crane PR, eds. The origin of the angiosperms and their biological consequences. Cambridge University Press, Cambridge

    Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants. New York Botanical Garden, Bronx

    Google Scholar 

  • Endress PK, Doyle JA (2009) Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96:22–66

    Google Scholar 

  • Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450:1184–1189

    Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, Chicago, ILs

    Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2005) The age of the angiosperms: a molecular timescale without a clock. Evolution 59:1245–1258

    Google Scholar 

  • Martens P (1971) Les gnetophytes. Gebrüder Bornträger, Berlin

    Google Scholar 

  • Emberger L (1944) Les plantes fossiles dans leurs rapports avec les végétaux, vivants. Boulevard Saint-Germain, Paris

    Google Scholar 

  • Ji Q, Li H, Bowe M, Liu Y, Taylor DW (2004) Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China. Acta Geol Sin 78:883–896

    Google Scholar 

  • Schenk A (1867) Die fossile Flora der Grenzschichten des Keupers und Lias Frankens. C.W. Kreidel’s Verlag, Wiesbaden

    Google Scholar 

  • Schenk A (1890) Paläophytologie. Druck und Verlag von R. Oldenbourg, München

    Google Scholar 

  • Skinner DJ, Hill TA, Gasser CS (2004) Regulation of ovule development. Plant Cell 16:S32–S45

    Google Scholar 

  • Endress PK, Igersheim A (2000a) Gynoecium structure and evolution in basal angiosperms. Intl J Plant Sci 161:S211–S223

    Google Scholar 

  • Endress PK, Igersheim A (2000b) The reproductive structures of the basal angiosperm Amborella trichopoda (Amborellaceae). Intl J Plant Sci 161:S237–S248

    Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Nat Acad Sci USA 104:19363–19368

    Google Scholar 

  • Hughes NF (1994) The enigma of angiosperm origins. Cambridge University Press, Cambridge

    Google Scholar 

  • Gothan W, Weyland H (1954) Lehrbuch der Paläobotanik. Akadmie-Verlag, Berlin

    Google Scholar 

  • Taylor EL, Taylor TN (2009) Seed ferns from the late Paleozoic and Mesozoic: any angiosperm ancestors lurking there? Am J Bot 96:237–251

    Google Scholar 

  • Engler A, Prantl K (1889) Die natürlichen Pflanzenfamilien, II. von Wilhelm Engelmann, Leipizig

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2005) When earth started blooming: insights from the fossil record. Curr Opin Plant Biol 8:5–12

    Google Scholar 

  • Soltis PS, Soltis DE (2004b) The origin and diversification of angiosperms. Am J Bot 91:1614–1626

    Google Scholar 

  • Pan K (1990) Rhamnaceous plants from Middle Jurassic of Yanliao region, north China. Acta Sci Nat Univ Sunyatseni 29:61–72

    Google Scholar 

  • Harris TM (1940) Caytonia. Ann Bot 4:713–734

    Google Scholar 

  • Yang Y (2004) Ontogeny of triovulate cones of Ephedra intermedia and origin of the outer envelope of ovules of Ephedraceae. Am J Bot 91:361–368

    Google Scholar 

  • Delevoryas T (1993) Origin, evolution, and growth patterns of cycads. In: Stevenson DW, Norstog KJ, eds. The biology, structure, and systematics of the Cycadales, proceedings of CYCAD 90, the second international conference on cycad biology. The Palm & Cycad Societies of Australia Ltd, Australia

    Google Scholar 

  • Crane PR (1986) The morphology and relationships of the Bennettitales. In: Spicer RA, Thomas BA, eds. Systematic and taxonomic approaches in palaeobotany. Clarendon Press, Oxford

    Google Scholar 

  • Kirchner M (1992) Untersuchungen an einigen Gymnospermen der Fränkischen Rhät-Lias-Grenzschichten. Paläontogr B 224:17–61

    Google Scholar 

  • Stockey RA, Rothwell GW (2003) Anatomically preserved Williamsonia (Williamsoniaceae): Evidence for bennettitalean reproduction in the Late Cretaceous of western North America. Intl J Plant Sci 164:251–262

    Google Scholar 

  • Igersheim A, Buzgo M, Endress PK (2001) Gynoecium diversity and systematics in basal monocots. Bot J Linn Soc 136:1–65

    Google Scholar 

  • Reymanowna M (1973) The Jurassic flora from Grojec near Krakow in Poland, Part II: Caytoniales and the anatomy of Caytonia. Acta Palaeobot 14:46–87

    Google Scholar 

  • Zhou Z, Barrett PM, Hilton J (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature 421:807–814

    Google Scholar 

  • Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421

    Google Scholar 

  • Harris TM (1941) Cones of extinct Cycadales from the Jurassic rocks of Yorkshire. Phil Trans Roy Soc London 231:75–98

    Google Scholar 

  • Cornet B, Habib D (1992) Angiosperm-like pollen from the ammonite-dated Oxfordian (Upper Jurassic) of France. Rev Palaeobot Palyn 71:269–294

    Google Scholar 

  • Sun G, Zheng S, Dilcher D, Wang Y, Mei S (2001) Early angiosperms and their associated plants from Western Liaoning, China. Shanghai Technology & Education Press, Shanghai

    Google Scholar 

  • Chamberlain CJ (1919) The living cycads. Hafner Publishing Company, New York, NY

    Google Scholar 

  • Chamberlain CJ (1920) The living cycads and phylogeny of seed plants. Am J Bot 7:146–153

    Google Scholar 

  • De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2006) Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeo Palaeoclim Palaeoecol 232:251–293

    Google Scholar 

  • Taylor EL, Taylor TN, Kerp H, Hermsen EJ (2006b) Mesozoic seed ferns: old paradigms, new discoveries. J Torrey Bot Soc 133:62–82

    Google Scholar 

  • Duan S (1998) The oldest angiosperm – a tricarpous female reproductive fossil from western Liaoning Province, NE China. Sci China D 41:14–20

    Google Scholar 

  • Rothwell GW, Crepet WL, Stockey RA (2009) Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. Am J Bot 96:296–322

    Google Scholar 

  • Dilcher DL, Sun G, Ji Q, Li H (2007) An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China. Proc Nat Acad Sci USA 104:9370–9374

    Google Scholar 

  • Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–904

    Google Scholar 

  • Ren Y, Chang H-L, Endress PK (2010) Floral development in Anemoneae (Ranunculaceae). Bot J Linn Soc 162:77–100

    Google Scholar 

  • Tomlinson PB, Takaso T (2002) Seed cone structure in conifers in relation to development and pollination: a biological approach. Can J Bot 80:1250–1273

    Google Scholar 

  • Delevoryas T (1982) Perspectives on the origin of cycads and cycadeoids. Rev Palaeobot Palyn 37:115–132

    Google Scholar 

  • Harris TM, Miller J (1974) Czekanowskiales. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Friis EM, Chaloner WG, Crane PR, eds. (1987) Origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge

    Google Scholar 

  • Sun G, Dilcher DL, Zheng S-L, Zhou ZK (1998) In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282:1692–1695

    Google Scholar 

  • Thoday MG, Berridge EM (1912) The anatomy of morphology of the inflorescences and flowers of Ephedra. Ann Bot 26:953–985

    Google Scholar 

  • Leng Q, Friis EM (2003) Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Syst Evol 241:77–88

    Google Scholar 

  • Heer O (1876) Beiträge zur Jura-Flora Ostsibiriens und des Amurlandes. Mem Acad Imper Sci St-Petersbourg, VIIe Serie 22:1–122

    Google Scholar 

  • Wang X (in press) Schmeissneria: an angiosperm from the Early Jurassic, J Syst Evol

    Google Scholar 

  • Wang X, Duan SY, Cui JZ (1997) Several species of Schizolepis and their significance on the evolution of conifers. Taiwania 42:73–85

    Google Scholar 

  • Joshi AC (1938) The nature of the ovular stalk in Polygonaceae and some related families. Ann Bot ns-2:957–959

    Google Scholar 

  • Kirchner M, Van Konijnenburg-Van Cittert JHA (1994) Schmeissneria microstachys (Presl, 1833) Kirchner et Van Konijnenburg-Van Cittert, comb. nov. and Karkenia hauptmannii Kirchner et Van Konijnenburg-Van Cittert, sp. nov., plants with ginkgoalean affinities from the Liassic of Germany. Rev Palaeobot Palyn 83:199–215

    Google Scholar 

  • Van Konijnenburg-Van Cittert JHA (in press) The Early Jurassic male ginkgoalean inflorescence Stachyopitys preslii Schenk and its in situ pollen. Scrip Geol 7

    Google Scholar 

  • Van Konijnenburg-Van Cittert JHA, Schmeißner S (1999) Fossil insect eggs on Lower Jurassic plant remains from Bavaria (Germany). Palaeogeo Palaeoclim Palaeoecol 152:215–223

    Google Scholar 

  • Xu R (1987) Do fossil angiosperms really occur in Jurassic beds of the Yanshan-Liaoning area, north China. Kexue Tongbao 32:1712–1714

    Google Scholar 

  • Thomas HH (1925) The Caytoniales, a new group of angiospermous plants from the Jurassic rocks of Yorkshire. Phil Trans Roy Soc London B 213:299–363

    Google Scholar 

  • Wang X, Zheng S (2009) The earliest normal flower from Liaoning Province, China. J Integr Plant Biol 51:800–811

    Google Scholar 

  • Harris TM (1961) The fossil cycads. Palaeontology 4:313–323

    Google Scholar 

  • Nemejc F (1968) Paleobotanika III. Vydala Academia, 479 Nakladtelstvi Ceskoslovensk Akadmeie Ved, Praha

    Google Scholar 

  • Sage TL, Hristova-Sarkovski K, Koehl V, Lyew J, Pontieri V, Bernhardt P, Weston P, Bagha S, Chiu G (2009) Transmitting tissue architecture in basal-relictual angiosperms: implications for transmitting tissue origins. Am J Bot 96:183–206

    Google Scholar 

  • Weber R (1968) Die fossile Flora der Rhät-Lias-Übergangsschichten von Bayreuth (Oberfranken) unter besonder Berücksichtigung der Coenologie. Erl Geol Abh 72:1–73

    Google Scholar 

  • Taylor TN (1981) Paleobotany: an introduction to fossil plant biology. McGraw-Hill, New York, NY

    Google Scholar 

  • Singh H (1978) Embryology of gymnosperms. Gebrüder Bornträger, Berlin

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2010) Diversity in obscurity: fossil flowers and the early history of angiosperms. Phil Trans R Soc B: Biol Sci 365:369–382

    Google Scholar 

  • Sanderson MJ, Thorne JL, Wikström N, Bremer K (2004) Molecular evidence on plant divergence times. Am J Bot 91:1656–1665

    Google Scholar 

  • Payer JB (1857) Traite d‘organogenie comparee de la fleurs. Librairie de Victor Masson, Paris

    Google Scholar 

  • Rothwell GW, Stockey RA (2002) Anatomically preserved Cycadeoidea (Cycadeoidaceae), with a reevaluation of systematic characters for the seed cones of Bennettitales. Am J Bot 89:1447–1458

    Google Scholar 

  • Harris TM, Millington W (1974) Ginkgoales. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Pedersen KR, Crane PR, Friis EM (1989a) Pollen organs and seeds with Eucommiidites pollen. Grana 28:279–294

    Google Scholar 

  • Zheng S-L, Zhang L-J, Gong E-P (2003) A discovery of Anomozamites with reproductive organs. Acta Bot Sin 45:667–672

    Google Scholar 

  • Gothan W (1914) Die unterliassische (rhätische) Flora der Umgegend von Nürnberg. Abh Naturhist Gesell Nürnberg 19:91–186

    Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci USA 107:5897–5902

    Google Scholar 

  • Delevoryas T (1991) Investigations of North American cycadeoids: Weltrichia and Williamsonia from the Jurasssic of Oaxaca, Mexico. Am J Bot 78:177–182

    Google Scholar 

  • Zürlick VF (1958) Neue Pflanzen aus dem Rhätolias. Aufschluß 9:58–60

    Google Scholar 

  • Crane PR (1987) Vegetational consequences of the angiosperm diversification. In: Friis EM, Chaloner WG, Crane PR, eds. The origin of the angiosperms and their biological consequences. Cambridge University Press, Cambridge

    Google Scholar 

  • Sporne KR (1971) The morphology of gymnosperms, the structure and evolution of primitive seed plants. Hutchinson University Library, London

    Google Scholar 

  • Wang X (2009) New fossils and new hope for the origin of angiosperms. In: Pontarotti P, ed. Evolutionary Biology: concept, modelling and application. Springer-Verlag, Berlin

    Google Scholar 

  • Liu X-Q, Li C-S, Wang Y-F (2006b) Plants of Leptostrobus Heer (Czekanowkiales) from the Early Cretaceous and Late Triassic of China, with discussion of the genus. J Integr Plant Biol 48:137–147

    Google Scholar 

  • Endress PK (2008) Perianth biology in the basal grade of extant angiosperms. Intl J Plant Sci 169:844–862

    Google Scholar 

  • Doyle JA (2008) Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Intl J Plant Sci 169:816–843

    Google Scholar 

  • Doyle JA (2006) Seed ferns and the origin of angiosperms. J Torrey Bot Soc 133:169–209

    Google Scholar 

  • Bierhorst DW (1971) Morphology of vascular plants. Macmillan Company, New York, NY

    Google Scholar 

  • Pan G (1997) Juglandaceous plant (Pterocarya) from Middle Jurassic of Yanliao region, north China. Acta Sci Nat Univ Sunyatseni 36:80–86

    Google Scholar 

  • Barbacka M, Boka K (2000b) A new early Liassic Caytoniales fructification from Hungary. Acta Palaeobot 40:85–111

    Google Scholar 

  • Krassilov VA, Bugdaeva E (1999) An angiosperm cradle community and new proangiosperm taxa. Acta Palaeobot Suppl. 2:111–127

    Google Scholar 

  • Martin W, Gierl A, Sädler H (1989a) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339:46–48

    Google Scholar 

  • Martin W, Gierl A, Sädler H (1989b) Angiosperm origins. Nature 342:132

    Google Scholar 

  • Yang Y, Geng B-Y, Dilcher DL, Chen Z-D, Lott TA (2005) Morphology and affinities of an Early Cretaceous Ephedra (Ephedraceae) from China. Am J Bot 92:231–241

    Google Scholar 

  • Cornet B (1989a) Late Triassic angiosperm-like pollen from the Richmond rift basin of Virginia, USA. Paläontogr B 213:37–87

    Google Scholar 

  • Eames AJ (1961) Morphology of the angiosperms. McGraw-Hill Book Company Inc., New York, NY

    Google Scholar 

  • Endress PK (2010) The evolution of floral biology in basal angiosperms. Phil Trans R Soc B: Biol Sci 365:411–421

    Google Scholar 

  • Schmeißner S, Hauptmann H (1993) Fossile Pflanzen aus den Rhät-Lias-Übergangs-Schichten des Kulmbach-Bayreuther Raumes. Naturwiss Gesel Bayreuth Ber XII:51–66

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2009) Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. Am J Bot 96:252–283

    Google Scholar 

  • Schweitzer H-J, Kirchner M (1995) Die Rhäto-Jurassischen Floren des Iran und Afghanistans. 8. Ginkgophyta. Paläontogr B 237:1–58

    Google Scholar 

  • Frohlich MW, Parker DS (2000) The mostly male theory of flower evolutionary origins: from genes to fossils. Syst Bot 25:155–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, X. (2010). Flower-Related Fossils from the Jurassic. In: The Dawn Angiosperms. Lecture Notes in Earth Sciences, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01161-0_6

Download citation

Publish with us

Policies and ethics