Skip to main content

Flowers from the Early Cretaceous

  • Chapter
  • First Online:
The Dawn Angiosperms

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 121))

  • 705 Accesses

Abstract

Fossil angiosperms from the Early Cretaceous are of special interest because currently the earliest widely-accepted angiosperms are from this age. Chaoyangia, Archaefructus, Sinocarpus, and Callianthus are four representative angiosperms from the Yixian Formation (125 Ma, Early Cretaceous). Their early age, distinct morphology, and reproductive features not only display an aspect of early angiosperms, but also, if monophyly of angiosperms is assumed, strongly suggest that the origin of angiosperms must have occurred even earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Guo SX, Wu XW (2000) Ephedrites from latest Jurassic Yixian Formation in western Liaoning, northeast China. Acta Palaeont Sin 39:81–91

    Google Scholar 

  • Taylor DW, Hickey LJ (1996) Flowering plant origin, evolution & phylogeny. Chapman & Hall, New York, NY

    Google Scholar 

  • Burleigh JG, Mathews S (2004) Phylogenetic signal in nucleotide data from seed plants: implications from resolving the seed plant tree of life. Am J Bot 91:1599–1613

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) CLUSTAL-X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Google Scholar 

  • Cope EA (1998) Taxaceae: the genera and cultivated species. Bot Rev 64:291–322

    Google Scholar 

  • Wang X, Duan S, Geng B, Cui J, Yang Y (2007b) Schmeissneria: a missing link to angiosperms? BMC Evol Biol 7:14

    Google Scholar 

  • Wang X, Duan S, Geng B, Cui J, Yang Y (2007c) Is Jurassic Schmeissneria an angiosperm? Acta Palaeont Sin 46:486–490

    Google Scholar 

  • Wu S-Q (2003) Land plants. In: Chang M-M, Chen P-J, Wang Y-Q, Wang Y, Miao D-S, eds. The Jehol biota. Shanghai Scientific & Technical Publishers, Shanghai

    Google Scholar 

  • Williams JH (2009) Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. Am J Bot 96:144–165

    Google Scholar 

  • Zhang H, Huang Y, Miao R, Ye C, Liao W, Jin J (2004) Systematics of spermatophyta. Science Press, Beijing

    Google Scholar 

  • Rudall PJ, Furness CA, Chase MW, Fay MF (1997) Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Can J Bot 75:408–430

    Google Scholar 

  • Wang X, Zheng SL (2010) Whole fossil plants of Ephedra and their implications on the morphology, ecology and evolution of Ephedraceae (Gnetales). Chin Sci Bull 55:1511–1519

    Google Scholar 

  • Furness CA, Rudall PJ, Sampson FB (2002) Evolution of microsporogenesis in angiosperms. Intl J Plant Sci 163:235–260

    Google Scholar 

  • He CY, Münster T, Saedler H (2004) On the origin of morphological floral novelties. FEBS Lett 567:147–151

    Google Scholar 

  • Doyle JA, Endress PK (2010) Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: magnoliidae and eudicots. J Syst Evol 48:1–35

    Google Scholar 

  • Zhou Z, Barrett PM, Hilton J (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature 421:807–814

    Google Scholar 

  • Sun G, Zheng S, Dilcher D, Wang Y, Mei S (2001) Early angiosperms and their associated plants from Western Liaoning, China. Shanghai Technology & Education Press, Shanghai

    Google Scholar 

  • Harley MM (2004) Triaperturate pollen in the monocotyledons: configurations and conjectures. Plant Syst Evol 247:75–122

    Google Scholar 

  • Drinnan AN, Crane PR, Friis EM, Pedersen KR (1991) Angiosperm flowers and tricolpate pollen of buxaceous affinity from the Potomac Group (mid-Cretaceous) of eastern North America. Am J Bot 78:153–176

    Google Scholar 

  • Drinnan AN, Crane PR, Hoot SB (1994) Patterns of floral evolution in the early diversification on non-magnoliid dicotyledons (eudicots). Plant Syst Evol 8:93–122

    Google Scholar 

  • Peng Y-D, Zhang L-D, Chen W, Zhang C-J, Guo S-Z, Xing D-H, Jia B, Chen S-W, Ding Q-H (2003) 40Ar/39Ar and K-Ar dating of the Yixian Formation volcanic rocks, western Liaoning Province, China. Geochimca 32:427–435

    Google Scholar 

  • Endress PK (1980) Ontogeny, function and evolution of extreme floral construction in the Monimiaceae. Plant Syst Evol 134:79–120

    Google Scholar 

  • Walker JW, Skvarla JJ (1975) Primitively columellaless pollen: a new concept in the evolutionary morphology of angiosperms. Science 187:445–447

    Google Scholar 

  • Saarela JM, Rai HS, Doyle JA, Endress PK, Mathews S, Marchant AD, Briggs BG, Graham SW (2007) Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446:312–315

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2006) Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeo Palaeoclim Palaeoecol 232:251–293

    Google Scholar 

  • Wang X, Zheng SL, Jin JH (2010) Structure and relationships of Problematospermum, an enigmatic seed from the Jurassic of China. Intl J Plant Sci 171:447–456

    Google Scholar 

  • Chang S-C, Zhang H, Renne PR, Fang Y (2009a) High-precision 40Ar/39Ar age for the Jehol Biota. Palaeogeo Palaeoclim Palaeoecol 280:94–104

    Google Scholar 

  • Rothwell GW, Crepet WL, Stockey RA (2009) Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. Am J Bot 96:296–322

    Google Scholar 

  • Duan S (1998) The oldest angiosperm – a tricarpous female reproductive fossil from western Liaoning Province, NE China. Sci China D 41:14–20

    Google Scholar 

  • Biswas C, Johri BM (1997) The gymnosperms. Springer, Berlin

    Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2004) The origin and early evolution of angiosperms. Ann New York Acad Sci 1133:2–25

    Google Scholar 

  • Takhtajan A (1969) Flowering plants, origin and dispersal. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Dilcher DL, Sun G, Ji Q, Li H (2007) An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China. Proc Nat Acad Sci USA 104:9370–9374

    Google Scholar 

  • Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–904

    Google Scholar 

  • Tomlinson PB (1992) Aspects of cone morphology and development in Podocarpaceae (Coniferales). Intl J Plant Sci 153:572–588

    Google Scholar 

  • Taylor DW, Hickey LJ (1990) An Aptian plant with attached leaves and flowers: implications for angiosperm origin. Science 247:702–704

    Google Scholar 

  • Heywood VH, ed (1979) Flowering plants of the world. Oxford University Press, Oxford

    Google Scholar 

  • Krassilov V, Lewy Z, Nevo E (2004) Controversial fruit-like remains from the Lower Cretaceous of the Middle East. Cret Res 25:697–707

    Google Scholar 

  • Tomlinson PB, Takaso T (2002) Seed cone structure in conifers in relation to development and pollination: a biological approach. Can J Bot 80:1250–1273

    Google Scholar 

  • Wu S-Q (1999) A preliminary study of the Jehol flora from the western Liaoning. Palaeoworld 11:7–57

    Google Scholar 

  • Yang Y (2007) Asymmetrical development of biovulate cones resulting in uniovulate cones in Ephedra rhytiodosperma (Ephedraceae). Plant Syst Evol 264:175–182

    Google Scholar 

  • Endress PK (2005) Carpels of Brasenia (Cabombaceae) are completely ascidiate despite a long stigmatic crest. Ann Bot 96:209–215

    Google Scholar 

  • Eriksson O, Friis EM, Pedersen KR, Crane PR (2000) Seed size and dispersal systems of Early Cretaceous angiosperms from Famalicao, Portugal. Intl J Plant Sci 161:319–329

    Google Scholar 

  • Sun G, Dilcher DL, Zheng S-L, Zhou ZK (1998) In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282:1692–1695

    Google Scholar 

  • Leng Q, Friis EM (2003) Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Syst Evol 241:77–88

    Google Scholar 

  • Wang W-L, Zhang H, Zhang L-J, Zheng S-L, Yang F-L, Li Z-T, Zheng Y-J, Ding Q-H (2004) Standard sections of Tuchengzi stage and Yixian stage and their stratigraphy, palaeontology and tectonic-volcanic actions. Geological Publishing House, Beijing

    Google Scholar 

  • Hochuli PA, Feist-Burkhardt S (2004) A boreal early cradle of angiosperms? angiosperm-like pollen from the middle Triassic of the Barents Sea (Norway). J Micropalaeont 23:97–104

    Google Scholar 

  • Penaflor C, Hansen DR, Dastidar SG, Cai Z, Kuehl JV, Boore JL, Jansen RK (2007) Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phyl Evol 45:547–563

    Google Scholar 

  • Krassilov VA (1982) Early Cretaceous flora of Mongolia. Paläontogr B 181:1–43

    Google Scholar 

  • Tomlinson PB, Braggins JE, Rattenbury JA (1991) Pollination drop in relation to cone morphology in Podocarpaceae: a novel reproductive mechanism. Am J Bot 78:1289–1303

    Google Scholar 

  • Hamilton D (2007) First flower. PBS, USA

    Google Scholar 

  • Crepet WL, Nixon KC, Gandolfo MA (2004) Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am J Bot 91:1666–1682

    Google Scholar 

  • Yang Y, Fu DZ, Zhu G (2003) A new species of Ephedra (Ephedraceae) from China. Novon 13 153–155

    Google Scholar 

  • Walker JW, Walker AG (1984) Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann Miss Bot Gard 71:464–521

    Google Scholar 

  • Pedersen KR, Von Balthazar M, Crane PR, Friis EM (2007) Early Cretaceous floral structures and in situ tricolpate-striate pollen: new early eudicots from Portugal. Grana 46:176–196

    Google Scholar 

  • Wang X, Zheng S (2009) The earliest normal flower from Liaoning Province, China. J Integr Plant Biol 51:800–811

    Google Scholar 

  • Krassilov VA (2009) Diversity of Mesozoic gnetophytes and the first angiosperms. Paleont J 43:1272–1280

    Google Scholar 

  • Zavada MS (1984) Angiosperm origins and evolution based on dispersed fossil pollen ultrastructure. Ann Miss Bot Gard 71:444–463

    Google Scholar 

  • Harley MM (1990) Occurrence of simple, tectate, monosulcate or trichotomosulcate pollen grains within the Palmae. Rev Palaeobot Palyn 64:137–147

    Google Scholar 

  • Rydin C, Wu S, Friis E (2006b) Liaoxia Cao et S.Q. Wu (Gnetales): ephedroids from the Early Cretaceous Yixian Formation in Liaoning, northeastern China. Plant Syst Evol 262:239–265

    Google Scholar 

  • Hayes V, Schneider EL, Carlquist S (2000) Floral development of Nelumbo nucifera (Nelumbonaceae). Intl J Plant Sci 161:S183–S191

    Google Scholar 

  • Crane PR (1996) The fossil history of Gnetales. Intl J Plant Sci 157:S50–S57

    Google Scholar 

  • Walker JW (1976) Comparative pollen morphology and phylogeny of the Ranalean complex. In: Beck CB, ed. Origin and early evolution of angiosperms. Columbia University Press, New York, NY

    Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis MJ, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Google Scholar 

  • Zavada MS (2007) The identification of fossil angiosperm pollen and its bearing on the time and place of the origin of angiosperms. Plant Syst Evol 263:117–134

    Google Scholar 

  • Hill CR, Crane PR (1982) Evolutionary cladistics and the origin of angiosperms. In: Joysey KA, Friday AE, eds. Problems of phylogenetic reconstruction, Proceedings of the systematics association symposium, Cambridge, 1980. Academic Press, New York, NY

    Google Scholar 

  • Chamberlain CJ (1957) Gymnosperms, structure and evolution. Johnson Reprint Corporation, New York, NY

    Google Scholar 

  • Sampson FB (2000) Pollen diversity in some modern Magnoliids. Intl J Plant Sci 161:S193–S210

    Google Scholar 

  • Soltis DE, Soltis PS, Zanis M (2002) Phylogeny of seed plants based on eight genes. Am J Bot 89:1670–1681

    Google Scholar 

  • Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New York, NY

    Google Scholar 

  • Krassilov V, Volynets Y (2008) Weedy Albian angiosperms. Acta Palaeobot 48:151–169

    Google Scholar 

  • Dilcher DL, Bernardes-De-Oliveira ME, Pons D, Lott TA (2005) Welwitschiaceae from the Lower Cretaceous of northeastern Brazil. Am J Bot 92:1294–1310

    Google Scholar 

  • APG (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Google Scholar 

  • Endress PK, Doyle JA (2009) Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96:22–66

    Google Scholar 

  • Friis EM, Doyle JA, Endress PK, Leng Q (2003) Archaefructus – angiosperm precursor or specialized early angiosperm? Trends Plant Sci 8:S369–S373

    Google Scholar 

  • Bowe LM, Coat G, de Pamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and gnetales’ closest relatives are conifers. Proc Nat Acad Sci USA 97:4092–4097

    Google Scholar 

  • Ren D (1998) Flower-associated Brachycera flies as fossil evidences for Jurassic angiosperm origins. Science 280:85–88

    Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci USA 107:5897–5902

    Google Scholar 

  • Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (and other methods), 4.0 Beta edn. Sinauer Associate, Inc., Sunderland, MA

    Google Scholar 

  • Wang X, Ren D, Wang Y (2000) First discovery of angiospermous pollen from Yixian Formation. Acta Geol Sin 74:265–272

    Google Scholar 

  • Wang X (2009) New fossils and new hope for the origin of angiosperms. In: Pontarotti P, ed. Evolutionary Biology: concept, modelling and application. Springer-Verlag, Berlin

    Google Scholar 

  • Endress PK (2008) Perianth biology in the basal grade of extant angiosperms. Intl J Plant Sci 169:844–862

    Google Scholar 

  • Taylor DW, Hickey LJ (1992) Phylogenetic evidence for the herbaceous origin of angiosperms. Plant Syst Evol 180:137–156

    Google Scholar 

  • Ji Q, Li H, Bowe M, Liu Y, Taylor DW (2004) Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China. Acta Geol Sin 78:883–896

    Google Scholar 

  • Doyle JA (2008) Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Intl J Plant Sci 169:816–843

    Google Scholar 

  • Bierhorst DW (1971) Morphology of vascular plants. Macmillan Company, New York, NY

    Google Scholar 

  • Doyle JA, Endress PK (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Intl J Plant Sci 161:S121–153

    Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann NY Acad Sci 1133:3–25

    Google Scholar 

  • Rudall PJ, Remizowa MV, Prenner G, Prychid CJ, Tuckett RE, Sokoloff DD (2009) Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower. Am J Bot 96:67–82

    Google Scholar 

  • Doyle JA (1998) Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Mol Phyl Evol 9:448–462

    Google Scholar 

  • Yang Y, Geng B-Y, Dilcher DL, Chen Z-D, Lott TA (2005) Morphology and affinities of an Early Cretaceous Ephedra (Ephedraceae) from China. Am J Bot 92:231–241

    Google Scholar 

  • Krassilov VA, Shilin PV, Vachrameev VA (1983) Cretaceous flowers from Kazakhstan. Rev Palaeobot Palyn 40:91–113

    Google Scholar 

  • Brenner GJ (1976) Middle Cretaceous floral province and early migrations of angiosperms. In: Beck CB, ed. Origin and early evolution of angiosperms. Columbia University Press, New York, NY

    Google Scholar 

  • Dilcher DL (1979) Early angiosperm reproduction: an introductory report. Rev Palaeobot Palyn 27:291–328

    Google Scholar 

  • Eames AJ (1961) Morphology of the angiosperms. McGraw-Hill Book Company Inc., New York, NY

    Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Nat Acad Sci USA 104:19363–19368

    Google Scholar 

  • Chu GL, Stutz HC, Sanderson SC (1991) Morphology and taxonomic position of Suckleya suckleyana (Chenopodiaceae). Am J Bot 78:63–68

    Google Scholar 

  • Hu SY, Dilcher DL, Jarzen DM, Taylor DW (2008) Early steps of angiosperm-pollinator coevolution. Proc Nat Acad Sci USA 105:240–245

    Google Scholar 

  • Wilson TK (1964) Comparative morphology of the Canellaceae. III. Pollen. Bot Gaz 125:192–197

    Google Scholar 

  • Hughes NF (1994) The enigma of angiosperm origins. Cambridge University Press, Cambridge

    Google Scholar 

  • Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Nat Acad Sci USA 97:4086–4091

    Google Scholar 

  • Judd WS, Campbell SC, Kellogg EA, Stevens PF (1999) Plant systematics: a phylogenetic approach. Sinauer Associate Inc., Sunderland, MA

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2009) Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. Am J Bot 96:252–283

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2005) When earth started blooming: insights from the fossil record. Curr Opin Plant Biol 8:5–12

    Google Scholar 

  • Magallon S, Sanderson MJ (2002) Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. Am J Bot 89:1991–2006

    Google Scholar 

  • Dorit RL (2009) Keyboards, codes and the search for optimality. Am Sci 97:376–379

    Google Scholar 

  • Endress PK (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. Intl J Plant Sci 162:1111–1140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, X. (2010). Flowers from the Early Cretaceous. In: The Dawn Angiosperms. Lecture Notes in Earth Sciences, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01161-0_5

Download citation

Publish with us

Policies and ethics