Skip to main content

Angiosperms: Characters and Criteria

  • Chapter
  • First Online:
The Dawn Angiosperms

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 121))

  • 671 Accesses

Abstract

A number of characters have been used to identify angiosperms in the fossil record. Comparison between their distributions in seed plants and the scope of angiosperms indicate that none of them match that of angiosperms exactly. Based on analysis of the temporal distribution of these characters in the geological history, the author proposes that ovule enclosed at the time of pollination should be adopted as an operational index character for fossil angiosperms. The positive and negative sides of this criterion are discussed, and a potential way to treat possible angiospermous fossils is laid out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Friedman WE (1992a) Double fertilization in nonflowering seed plants. Intl Rev Cytol 140:319–355

    Article  Google Scholar 

  • Barbacka M, Boka K (2000a) The stomatal ontogeny and structure of the Liassic pteridosperm Sagenopteris (Caytoniales) from Hungary. Intl J Plant Sci 161:149–157

    Article  Google Scholar 

  • Barbacka M, Boka K (2000b) A new early Liassic Caytoniales fructification from Hungary. Acta Palaeobot 40:85–111

    Google Scholar 

  • Stevens PF (2008) Angiosperm Phylogeny Website. Version 9, http://www.mobot.org/MOBOT/research/APweb. Cited 14 Jan 2010

  • Stockey RA, Rothwell GW (2003) Anatomically preserved Williamsonia (Williamsoniaceae): Evidence for bennettitalean reproduction in the Late Cretaceous of western North America. Intl J Plant Sci 164:251–262

    Article  Google Scholar 

  • Asama K (1982) Evolution and phylogeny of vascular plants based on the principles of growth retardation. Part 5. Origin of angiosperms inferred from the evolution of leaf form. Bull Nat Sci Mus Tokyo Ser C 8:43–58

    Google Scholar 

  • Li H, Taylor EL, Taylor TN (1996) Permian vessel elements. Science 271:188–189

    Article  Google Scholar 

  • Yang Y, Fu DZ, Wen LH (2000) On double fertilization in Ephedra. Adv Plant Sci 3:67–74

    Google Scholar 

  • Nixon KC, Crepet WL, Stevenson D, Friis EM (1994) A reevaluation of seed plant phylogeny. Ann Miss Bot Gard 81:484–533

    Article  Google Scholar 

  • Doyle JA, Hickey LJ (1976) Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. In: Beck CB, ed. Origin and early evolution of angiosperms. Columbia University Press, New York, NY

    Google Scholar 

  • Sun G (1981) Discovery of Dipteridaceae from the Upper Triassic of eastern Jilin. Acta Palaeont Sin 20:459–467

    Google Scholar 

  • Reymanowna M (1973) The Jurassic flora from Grojec near Krakow in Poland, Part II: Caytoniales and the anatomy of Caytonia. Acta Palaeobot 14:46–87

    Google Scholar 

  • Li H, Tian B, Taylor EL, Taylor TN (1994) Foliar anatomy of Gigantonoclea guizhouensis (Gigantopteridales) from the Upper Permian of Guizhou Province, China. Am J Bot 81:678–689

    Article  Google Scholar 

  • Cornet B, Habib D (1992) Angiosperm-like pollen from the ammonite-dated Oxfordian (Upper Jurassic) of France. Rev Palaeobot Palyn 71:269–294

    Article  Google Scholar 

  • Retallack G, Dilcher DL (1981b) Arguments for a glossopterid ancestry of angiosperms. Paleobiology 7:54–67

    Google Scholar 

  • Bailey IW (1944) The development of vessels in angiosperms and its significance in morphological research. Am J Bot 31:421–428

    Article  Google Scholar 

  • Maheshwari HK (2007) Deciphering angiosperm origins. Curr Sci 92:606–611

    Google Scholar 

  • Puri V (1952) Placentation in angiosperms. Bot Rev 18:603–651

    Article  Google Scholar 

  • Harris TM (1964) Caytoniales, cycadales & pteridosperms. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2006) Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeo Palaeoclim Palaeoecol 232:251–293

    Article  Google Scholar 

  • Carlquist S (1996) Wood anatomy of primitive angiosperms: new perspectives and syntheses. In: Hickey LJ, Taylor DW, eds. Flowering plant origin, evolution & phylogeny. Chapman and Hall, New York, NY, pp 68–90

    Chapter  Google Scholar 

  • Taylor EL, Taylor TN, Kerp H, Hermsen EJ (2006b) Mesozoic seed ferns: old paradigms, new discoveries. J Torrey Bot Soc 133:62–82

    Article  Google Scholar 

  • Rothwell GW (1972) Evidence of pollen tubes in Paleozoic pteridosperms. Science 175:772–724

    Google Scholar 

  • Stuessy TF (2004) A transitional-combinational theory for the origin of angiosperms. Taxon 53:3–16

    Article  Google Scholar 

  • Boke NH (1968) Structure and development of the flower and fruit of Pereskia diaz-romeroana. Am J Bot 55:1254–1260

    Article  Google Scholar 

  • Friedman WE (1990) Sexual reproduction in Ephedra nevadensis (Ephedraceae): further evidence of double fertilization in a nonflowering seed plant. Am J Bot 77:1582–1598

    Article  Google Scholar 

  • Biswas C, Johri BM (1997) The gymnosperms. Springer, Berlin

    Google Scholar 

  • Taylor TN, Archangelsky S (1985) The Cretaceous pteridosperms of Ruflorinia and Ktalenia and implication on cupule and carpel evolution. Am J Bot 72:1842–1853

    Article  Google Scholar 

  • Sun G (1993) Late Triassic flora from Tianqiaoling of Jilin, China. Jilin Science & Technology Press, Changchun

    Google Scholar 

  • Taylor DW, Hickey LJ (1990) An Aptian plant with attached leaves and flowers: implications for angiosperm origin. Science 247:702–704

    Article  Google Scholar 

  • Tomlinson PB, Takaso T (2002) Seed cone structure in conifers in relation to development and pollination: a biological approach. Can J Bot 80:1250–1273

    Article  Google Scholar 

  • Li H, Taylor DW (1999) Vessel-bearing stems of Vasovinea tianii gen. et sp. nov. (Gigantopteridales) from the Upper Permian of Guizhou Province, China. Am J Bot 86:1563–1575

    Article  Google Scholar 

  • Bateman RM, Hilton J, Rudall PJ (2006) Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. J Exper Bot 57:3471–3503

    Article  Google Scholar 

  • Sun G, Dilcher DL, Zheng S-L, Zhou ZK (1998) In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282:1692–1695

    Article  Google Scholar 

  • Krassilov VA (1977a) The origin of angiosperms. Bot Rev 43:143–176

    Article  Google Scholar 

  • Leng Q, Friis EM (2003) Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Syst Evol 241:77–88

    Article  Google Scholar 

  • Kryshtofovich A (1923) Pleuromeia and Hausmannia in eastern Sibiria, with a summary of recent contribution to the palaeobotany of the region. Am J Sci 5:200–208

    Article  Google Scholar 

  • Hochuli PA, Feist-Burkhardt S (2004) A boreal early cradle of angiosperms? angiosperm-like pollen from the middle Triassic of the Barents Sea (Norway). J Micropalaeont 23:97–104

    Article  Google Scholar 

  • Harris TM (1933) A new member of the Caytoniales. New Phytol 32:97–114

    Article  Google Scholar 

  • Thomas HH (1925) The Caytoniales, a new group of angiospermous plants from the Jurassic rocks of Yorkshire. Phil Trans Roy Soc London B 213:299–363

    Article  Google Scholar 

  • Nishida H, Pigg KB, Kudo K, Rigby JF (2007) New evidence of reproductive organs of Glossopteris based on permineralized fossils from Queensland, Australia. I. Ovulate organ Homevaleia gen. nov. J Plant Res 120:539–549

    Article  Google Scholar 

  • Potonie H (1921) Lehrbuch der Paläobotanik. Gebrüder Bornträger, Berlin

    Google Scholar 

  • Nishida H, Pigg KB, Kudo K, Rigby JF (2004) Zooidogamy in the late Permian genus Glossopteris. J Plant Res 117:323–328

    Article  Google Scholar 

  • Zavada MS (1984) Angiosperm origins and evolution based on dispersed fossil pollen ultrastructure. Ann Miss Bot Gard 71:444–463

    Article  Google Scholar 

  • Crane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Miss Bot Gard 72:716–793

    Article  Google Scholar 

  • Friedman WE (1991) Double fertilization in Ephedra trifurca, a non-flowering seed plant: the relationship between fertilization events and the cell cycle. Protoplasma 165:106–120

    Article  Google Scholar 

  • Pocock SAJ, Vasanthy G (1988) Cornetipollis reticulata, a new pollen with angiospermid features from Upper Triassic (Carnian) sediments of Arizona (U.S.A.), with notes on Equisetosporites. Rev Palaeobot Palyn 55:337–356

    Article  Google Scholar 

  • Arnold CA (1938) Paleozoic seeds. Bot Rev 4:205–234

    Article  Google Scholar 

  • Weng J-K, Li X, Stout J, Chapple C (2008) Independent origins of syringyl lignin in vascular plants. Proc Nat Acad Sci USA 105:7887–7892

    Article  Google Scholar 

  • Hill CR, Crane PR (1982) Evolutionary cladistics and the origin of angiosperms. In: Joysey KA, Friday AE, eds. Problems of phylogenetic reconstruction, Proceedings of the systematics association symposium, Cambridge, 1980. Academic Press, New York, NY

    Google Scholar 

  • Eames AJ (1952 ) The relationships of ephedrales. Phytomorph 2:79–100

    Google Scholar 

  • Chamberlain CJ (1957) Gymnosperms, structure and evolution. Johnson Reprint Corporation, New York, NY

    Google Scholar 

  • Zan S, Axsmith BJ, Fraser NC, Liu F, Xing D (2008) New evidence for laurasian corystosperms: Umkomasia from the Upper Triassic of Northern China. Rev Palaeobot Palyn 149:202–207

    Article  Google Scholar 

  • Berube MS, Neely DJ, DeVinne PB (1985) The American heritage dictionary. In: Boyer M, Ellis K, Harris DR, Soukhanov AH, eds. The American heritage dictionary. Dell Publishing Co., Inc., New York, NY

    Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants. New York Botanical Garden, Bronx

    Google Scholar 

  • Holmes WBK (1987) New corystosperm ovulate fructifications from the Middle Triassic of eastern Australia. Alcheringa 11:165–173

    Article  Google Scholar 

  • Pedersen KR, Crane PR, Friis EM (1989b) The morphology and phylogenetic significance of Vardekloeftia Harris (Bennettitales). Rev Palaeobot Palyn 60:7–24

    Article  Google Scholar 

  • Harder LD, Johnson SD (2009) Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytol 183:530–545

    Article  Google Scholar 

  • Li H, Taylor DW (1998) Aculeovinea yunguiensis gen. et sp. nov. (Gigantopteridales), a new taxon of gigantopterid stem from the Upper Permian of Guizhou Province, China. Intl J Plant Sci 159:1023–1033

    Article  Google Scholar 

  • Fernando DD, Lazzaro MD, Owens JN (2005) Growth and development of conifer pollen tubes. Sex Plant Repr 18:149–162

    Article  Google Scholar 

  • Ye M-N, Liu X-Y, Huang G-Q, Chen L-X, Peng S-J, Xu A-F, Zheng B-X (1986) Late Triassic and Early-Middle Jurassic fossil plants from northeastern Sichuan. Anhui Science and Technology Publishing House, Hefei

    Google Scholar 

  • Friedman WE, Williams JH (2004) Developmental evolution of the sexual process in ancient flowering plant lineages. Plant Cell 16:S119–132

    Article  Google Scholar 

  • Nishida H, Pig KB, Rigby JF (2003) Swimming sperm in an extinct Gondwanan plant. Nature 422:396–397

    Article  Google Scholar 

  • Archangelsky S, Barreda V, Passalia MG, Gandolfo M, Pramparo M, Romero E, Cuneo R, Zamuner A, Iglesias A, Llorens M, Puebla GG, Quattrocchio M, Volkheimer W (2009) Early angiosperm diversification: evidence from southern South America. Cret Res 30:1073–1082

    Article  Google Scholar 

  • Friedman WE (2008) Hydatellaceae are water lilies with gymnospermous tendencies. Nature 453:94–97

    Article  Google Scholar 

  • Shen GL, Gu ZG, Li KD (1976) More material of Hausmannia ussuriensis from Jingyuan, Gansu. J Lanzhou Univ 3:71–81

    Google Scholar 

  • Martens P (1971) Les gnetophytes. Gebrüder Bornträger, Berlin

    Google Scholar 

  • Sporne KR (1971) The morphology of gymnosperms, the structure and evolution of primitive seed plants. Hutchinson University Library, London

    Google Scholar 

  • Raghavan V (2005) Double fertilization: embryo and endosperm development in flowering plants. Springer, Berlin

    Google Scholar 

  • Arber EAN, Parkin J (1908) Studies on the evolution of the angiosperms: the relationship of the angiosperms to the Gnetales. Ann Bot os-22:489–515

    Google Scholar 

  • Cornet B (1989b) The reproductive morphology and biology of Sanmiguelia lewisii, and its bearing on angiosperm evolution in the late Triassic. Evol Trends Plants 3:25–51

    Google Scholar 

  • Doyle JA, Donoghue MJ (1986a) Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev 52:321–431

    Article  Google Scholar 

  • Taylor DW, Hickey LJ (1992) Phylogenetic evidence for the herbaceous origin of angiosperms. Plant Syst Evol 180:137–156

    Article  Google Scholar 

  • Johri BM, Ambegaokar KB (1984) Some unusual features in the embryology of angiosperms. Proc Indian Acad Sci (Plant Sci) 93:413–427

    Google Scholar 

  • Doyle JA (2008) Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Intl J Plant Sci 169:816–843

    Article  Google Scholar 

  • Glasspool I, Hilton J, Collinson ME, Wang S-J (2004) Defining the gigantopterid concept: a reinvestigation of Gigantopteris (Megalopteris) nicotianaefolia Schenk and its taxonomic implications. Palaeontology 47:1339–1361

    Article  Google Scholar 

  • Bierhorst DW (1971) Morphology of vascular plants. Macmillan Company, New York, NY

    Google Scholar 

  • Williams JH, Friedman WE (2002) Identification of diploid endosperm in an early angiosperm lineage. Nature 415:522–526

    Article  Google Scholar 

  • Norstog KJ (1990) Spermatozoids of Microcycas calocoma: ultrastructure. Bot Gaz 151:275–284

    Article  Google Scholar 

  • Endress PK, Igersheim A (2000a) Gynoecium structure and evolution in basal angiosperms. Intl J Plant Sci 161:S211–S223

    Article  Google Scholar 

  • Endress PK, Igersheim A (2000b) The reproductive structures of the basal angiosperm Amborella trichopoda (Amborellaceae). Intl J Plant Sci 161:S237–S248

    Article  Google Scholar 

  • Li H (2003) Lower Cretaceous angiosperm leaf from Wuhe in Anhui, China. Chin Sci Bull 48:611–614

    Article  Google Scholar 

  • Cornet B (1989a) Late Triassic angiosperm-like pollen from the Richmond rift basin of Virginia, USA. Paläontogr B 213:37–87

    Google Scholar 

  • Eames AJ (1961) Morphology of the angiosperms. McGraw-Hill Book Company Inc., New York, NY

    Google Scholar 

  • Marilaun AKv (1894) The natural history of plants, their forms, growth, reproduction, and distribution. II: The history of plants. Blackie & Son, London

    Google Scholar 

  • Doyle JA (1977) Patterns evolution in early angiosperms. In: Hallam A, ed. Patterns of evolution as illustrated by the fossil record. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Harper D (2001) Online etymology dictionary. http://www.etymonline.com, visited 2010

  • Hughes NF (1994) The enigma of angiosperm origins. Cambridge University Press, Cambridge

    Google Scholar 

  • Judd WS, Campbell SC, Kellogg EA, Stevens PF (1999) Plant systematics: a phylogenetic approach. Sinauer Associate Inc., Sunderland, MA

    Google Scholar 

  • Taylor EL, Taylor TN (2009) Seed ferns from the late Paleozoic and Mesozoic: any angiosperm ancestors lurking there? Am J Bot 96:237–251

    Article  Google Scholar 

  • Baillon H (1880) Sur deux cas de monstruosités. Bull Mens Soc Linn Paris 30:233–234

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2005) When earth started blooming: insights from the fossil record. Curr Opin Plant Biol 8:5–12

    Article  Google Scholar 

  • Harris TM (1940) Caytonia. Ann Bot 4:713–734

    Article  Google Scholar 

  • Kirchner M, Müller A (1992) Umkomasia franconica n. sp. und Pteruchus septentrionalis n. sp., Fruktifikationen von Thinnfeldia Ettingshausen. Paläontogr B 224:63–73

    Google Scholar 

  • Reymanowna M (1970) New investigations of the anatomy of Caytonia using sectioning and maceration. Paläontogr B 3:651–655

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, X. (2010). Angiosperms: Characters and Criteria. In: The Dawn Angiosperms. Lecture Notes in Earth Sciences, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01161-0_3

Download citation

Publish with us

Policies and ethics