Skip to main content

Can ECG Recordings and Mathematics tell the Condition of Your Heart?

  • Chapter
  • First Online:
Book cover Simula Research Laboratory

Abstract

If a coronary artery supplying blood to the heart becomes blocked, the heart will not receive sufficient oxygen, causing an ischemic region. If the condition persists, it will eventually lead to permanent damage, that is, myocardial infarction. Coronary artery disease is one of the most common diseases in the Western world, causing millions of deaths each year. For example, in the United States 18 per cent of deaths in 2005 were due to coronary artery disease [76], while in Denmark around eight per cent of the population experiences poor health because of the disease [77].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Fischer, F. Hanser, B. Pfeifer, M. Seger, C. Hintermüller, R. Modre, B. Tilg, T. Trieb, T. Berger, F. X. Roithinger, and F. Hintringer. A signal processing pipeline for noninvasive imaging of ventricular preexcitation. Methods of Information in Medicine, 44(4):508–515, 2005.

    Google Scholar 

  2. L. K. Cheng, G. B. Sands, R. L. French, S. J. Withy, S. P. Wong, M. E. Legget, W. M. Smith, and A. J. Pullan. Rapid construction of a patient-specific torso model from 3D ultrasound for non-invasive imaging of cardiac electrophysiology. Medical & Biological Engineering & Computing, 43:325–330, 2005.

    Article  Google Scholar 

  3. M. R. Franz, J. T. Flaherty, E. V. Platia, B. H. Bulkley, and M. L. Weisfeldt. Localization of regional myocardial ischemia by recording of monophasic action potentials. Circulation, 69:593–604, 1984.

    Google Scholar 

  4. W. E. Cascio, H. Yang, T. A. Johnson, B. J. Muller-Borer, and J. J. Lemasters. Electrical properties and conduction in reperfused papillary muscle. Circulation Research, 89:807–814, 2001.

    Article  Google Scholar 

  5. E. Downar, M. J. Janse, and D. Durrer. The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation, 56:217–224, 1977.

    Google Scholar 

  6. A. G. Kleber, M. J. Janse, F. J. van Capelle, and D. Durrer. Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circulation Research, 42:603–613, 1978.

    Google Scholar 

  7. F. J. Vetter and A. D. McCulloch. Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Progress in Biophysics & Molecular Biology, 69:157–183, 1998.

    Article  Google Scholar 

  8. P. M.F. Nielsen, I. J.L. Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. American Journal of Physiology, 260:1365–1378, 1991.

    Google Scholar 

  9. B. F. Nielsen, O. M. Lysaker, C. Tarrou, A. Abildgaard, M. MacLachlan, and A. Tveito. On the use of st-segment shifts and mathematical models for identifying ischemic heart disease. Computers in Cardiology 2005, Lyon, France, September 25-28, pages 1005–1008. IEEE, 2005.

    Google Scholar 

  10. D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning discrete approximations of the Reissner-Mindlin plate model. Mathematical Modeling and Numerical Analysis, 31(4):517–557, 1997.

    MATH  MathSciNet  Google Scholar 

  11. K.-A. Mardal and R. Winther. Uniform preconditioners for the time dependent Stokes problem. Numerische Mathematik, 98(2):305–327, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Haug and R. Winther. A domain embedding preconditioner for the Lagrange multiplier system. Mathematics of Computation, 69(229):65–82, 1999.

    Article  MathSciNet  Google Scholar 

  13. O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning methods. Numerische Mathematik, 48(5):479–498, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  14. O. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned conjugate gradient method. Numerische Mathematik, 48(5):499–523, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  15. O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1994.

    Google Scholar 

  16. A. M. Bruaset. A Survey of Preconditioned Iterative Methods, volume 324. Addison-Wesley Longman (currently CRC Press), 1995.

    Google Scholar 

  17. B. F. Nielsen, T. S. Ruud, G. T. Lines, and A. Tveito. Optimal monodomain approximations of the bidomain equations. Applied Mathematics and Computation, 184(2):276–290, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. S. Ruud, B. F. Nielsen, O. M. Lysaker, and J. Sundnes. A computationally efficient method for determining the size and location of myocardial ischemia. IEEE Transactions on Biomedical Engineering, 56(2):263–272, 2009.

    Article  Google Scholar 

  19. B. F. Nielsen and K.-A. Mardal. Efficient preconditioners for optimality systems arising in connection with inverse problems. Submitted to journal for publication, 2008.

    Google Scholar 

  20. F. Greensite. Myocardial activation imaging. Computational inverse problems in electrocardiography, pages 143–190. WIT Press, 2001.

    Google Scholar 

  21. J. Cuppen and A. van Oosterom. Model studies with inversly calculated isochrones of ventricular depolarization. IEEE Transactions on Biomedical Engineering, BME-31:652–659, 1984.

    Article  Google Scholar 

  22. K.-A. Mardal, B. F. Nielsen, X. Cai, and A. Tveito. An order optimal solver for the discretized bidomain equations. Numerical Linear Algebra with Applications, 14(2):83–98, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Tilg, G. Fischer, R. Modre, F. Hanser, B. Messnarz, M. Schocke, C. Kremser, T. Berger, F. Hintringer, and F. X. Roithinger. Model-based imaging of cardiac electrical excitation in humans. IEEE Transactions on Medical Imaging, 21(9):1031–1039, 2002.

    Article  Google Scholar 

  24. R. Modre, B. Tilg, G. Fischer, and P. Wach. Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data. IEEE Transactions on Biomedical Engineering, 49(10):1153–1161, 2002.

    Article  Google Scholar 

  25. P. Pedregal. Introduction to optimization. Springer-Verlag, 2004.

    Google Scholar 

  26. B. Messnarz, M. Seger, R. Modre, G. Fischer, F. Hanser, and B. Tilg. A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the null space. IEEE Transactions on Biomedical Engineering, 51(9):1609–1618, 2004.

    Article  Google Scholar 

  27. A. J. Pullan, L. K. Cheng, M. P. Nash, C. P. Bradley, and D. J. Paterson. Noninvasive electrical imaging of the heart: Theory and model development. Annals of Biomedical Engineering, 29(10):817–836, 2001.

    Article  Google Scholar 

  28. A. J. Pullan, M. L. Buist, and L. K. Cheng. Mathematically Modelling the Electrical Activity of the Heart: From Cell to Body Surface and Back. World Scientific Publishing Company, 2005.

    Google Scholar 

  29. D. Braess. Finite elements. Theory, fast solvers, and applications in solid mechanics. Cambridge University Press, second edition, 2001.

    Google Scholar 

  30. O. M. Lysaker and B. F. Nielsen. Towards a level set framework for infarction modeling: An inverse problem. International Journal of Numerical Analysis and Modeling, 3(4):377–394, 2006.

    MATH  MathSciNet  Google Scholar 

  31. B. F. Nielsen, O. M. Lysaker, and A. Tveito. On the use of the resting potential and level set methods for identifying ischemic heart disease; an inverse problem. Journal of Computational Physics, 220(2):772–790, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. C. MacLachlan, B. F. Nielsen, O. M. Lysaker, and A. Tveito. Computing the size and location of myocardial ischemia using measurements of st-segment shift. IEEE Transactions on Biomedical Engineering, 2005.

    Google Scholar 

  33. F. Santosa. A level-set approach for inverse problems involving obstacles. ESAIM: Control, Optimisation and Calculus of Variations, 1:17–33, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  34. S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79:12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces, volume 153 of Applied Mathematical Sciences. Springer, 2003.

    Google Scholar 

  36. Z. Qu and A. Garfinkel. An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Transactions on Biomedical Engineering, 46(9):1166–1168, 1999.

    Article  Google Scholar 

  37. K. Skouibine and W. Krassowska. Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function. Annals of Biomedical Engineering, 28:772–780, 2000.

    Article  Google Scholar 

  38. J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K. A. Mardal, and A. Tveito. Computing the Electrial Activity in the Heart. Springer-Verlag, 2006.

    Google Scholar 

  39. J. Sundnes, B. F. Nielsen, K. A. Mardal, X. Cai, G. T. Lines, and A. Tveito. On the computational complexity of the bidomain and the monodomain models of electrophysiology. Annals of Biomedical Engineering, 34(7):1088–1097, 2006.

    Article  Google Scholar 

  40. R. L. Winslow, J. Rice, S. Jafri, E. Marban, and B. O’Rourke. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II, model studies. Circulation Research, 84:571–586, 1999.

    Google Scholar 

  41. E. Carmeliet. Cardiac ionic currents and acute ischemia: From channels to arrhythmias. Physiol. Rev., 79:917–1017, 1999.

    Google Scholar 

  42. J. T. Marti. Introduction to Sobolev Spaces and Finite Element Solution of Elliptic Boundary Value Problems. Academic Press, 1986.

    Google Scholar 

  43. C. W. Groetsch. Inverse Problems in the Mathematical Sciences. Vieweg, 1993.

    Google Scholar 

  44. A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. Springer, 1996.

    Google Scholar 

  45. H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer Academic Publishers, 1996.

    Google Scholar 

  46. Computational Inverse Problems in Electrocardiography. WIT Press, 2001.

    Google Scholar 

  47. L. K. Cheng, J. M. Bodely, and J. Pullan. Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology. IEEE Transactions on Biomedical Engineering, 50(1):11–22, January 2003.

    Article  Google Scholar 

  48. G. Huiskamp and A. van Oosterom. The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Transactions on Biomedical Engineering, 35:1047–1058, 1988.

    Article  Google Scholar 

  49. F. Greensite and G. Huiskamp. An improved method for estimating epicardial potentials from the body surface. IEEE Transactions on Biomedical Engineering, 45(1):98–104, January 1998.

    Article  Google Scholar 

  50. G. Huiskamp and F. Greensite. A new method for myocardial activation imaging. IEEE Transactions on Biomedical Engineering, 44(6):433–446, 1997.

    Article  Google Scholar 

  51. R. S. MacLeod and D. H. Brooks. Recent progress in inverse problems in electrocardiology. IEEE Engineering in Medicine and Biology, 17(1):73–83, January 1998.

    Article  Google Scholar 

  52. B. Hopenfeld, J. G. Stinstra, and R. S. Macleod. Mechanism for ST depression associated with contiguous subendocardial ischemia. Journal of Cardiovascular Electrophysiology, 15:1200–1206, 2004.

    Article  Google Scholar 

  53. M. P. Nash and A. J. Pullan. Challenges facing validation of noninvasive electrical imaging of the heart. The Annals of Noninvasive Electrocardiology, 10(1):73–82, 2005.

    Article  Google Scholar 

  54. R. M. Gulrajani. Forward and inverse problems of electrocardiography. IEEE Engineering in Medicine and Biology, 17(5):84–101, September 1998.

    Article  Google Scholar 

  55. O. Dössel. Inverse problem of electro- and magnetocardiography: Review and recent progress. International Journal of Bioelectromagnetism, 2(2), 2000.

    Google Scholar 

  56. Y. Rudy and B. J. Messinger-Rapport. The inverse problem in electrocardiography: Solutions in terms of epicardial potentials. Critical Reviews in Biomedical Engineering, 16:215–268, 1988.

    Google Scholar 

  57. Y. Rudy and H. S. Oster. The electrocardiographic inverse problem. Critical Reviews in Biomedical Engineering, 20:25–45, 1992.

    Google Scholar 

  58. C. P. Franzone, L. Guerri, S. Tentonia, C. Viganotti, and S. Baruffi. A mathematical procedure for solving the inverse potential problem of electrocardiography: Analysis of the time-space accuracy from in vitro experimental data. Mathematical Biosciences, 77:353–396, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  59. J. Lau, J. P. Ioannidis, E. M. Balk, C. Milch, N. Terrin, P. W. Chew, and D. Salem. Diagnosing acute cardiac ischemia in the emergency department: a systematic review of the accuracy and clinical effect of current technologies. Ann. Emerg. Med., 37:453–460, 2001.

    Article  Google Scholar 

  60. Y. Birnbaum and B. J. Drew. The electrocardiogram in ST elevation acute myocardial infarction: correlation with coronary anatomy and prognosis. Postgrad. Med. J., 79, 2003.

    Google Scholar 

  61. J. Keener and J. Sneyd. Mathematical Physiology. Springer-Verlag, 1998.

    Google Scholar 

  62. M. C. MacLachlan, J. Sundnes, and G. T. Lines. Simulation of ST segment changes during subendocardial ischemia using a realistic 3D cardiac geometry. IEEE Transactions on Biomedical Engineering, 52(5):799–807, May 2005.

    Article  Google Scholar 

  63. W. T. Miller and D. B. Geselowitz. Simulation studies of the electrocardiogram: II. ischemia and infarction. Circ. Res., 43:315–323, 1978.

    Google Scholar 

  64. P. R. Johnston. A cylindrical model for studying subendocardial ischemia in the left ventricle. Mathematical Biosciences, 186(1):43–61, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  65. P. R. Johnston and D. Kilpatrick. The effect of conductivity values on st segment shift in subendocardial ischaemia. IEEE Trans. Biomed. Eng., 50:150–158, 2003.

    Article  Google Scholar 

  66. P. R. Johnston, D. Kilpatrick, and C. Y. Li. The importance of anisotropy in modeling ST segment shift in subendocardial ischaemia. IEEE Trans. Biomed. Eng., 48:1366–1376, 2001.

    Article  Google Scholar 

  67. D. Kilpatrick, P. R. Johnston, and D. S. Li. Mechanisms of ST change in partial thickness ischemia. J. Electrocardiol., 36:7–12, 2003.

    Article  Google Scholar 

  68. D. Li, C. Y. Li, A. C. Yong, and D. Kilpatrick. Source of electrocardiographic ST changes in subendocardial ischemia. Circulation Research, 82:957–970, 1998.

    Google Scholar 

  69. B. Hopenfeld, J. G. Stinstra, and R. S. MacLeod. A mechanism for ST depression associated with contiguous subendocardial ischemia. J. Cardiovasc. Electrophysiol., 15:1200–1206, October 2004.

    Article  Google Scholar 

  70. K. R. Foster and H. P. Schwan. Dielectric properties of tissues and biological materials: a critical review. Critical Reviews in Biomedical Engineering, 17:25–104, 1989.

    Google Scholar 

  71. L. Clerc. Directional differences of impulse spread in trabecular muscle from mammalian heart. The Journal of Physiology, 255(2):335–346, 1976.

    Google Scholar 

  72. D. E. Roberts and A. M. Scher. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circulation Research, 50(3):342–351, 1982.

    Google Scholar 

  73. F. Hanser, M. Seger, B. Tilg, R. Modre, G. Fischer, B. Messnarz, F. Hintringer, T. Berger, and F. X. Roithinger. Influence of ischemic and infarcted tissue on the surface potential. Computers in Cardiology, 30:789–792, 2003.

    Google Scholar 

  74. P. C. Franzone, L. Guerri, and B. Taccardi. Spread of excitation in a myocardial volume: Simulation studies in a model of anisotropic ventricular muscle activated by point stimulation. Journal of Cardiovascular Electrophysiology, 4(2):144–160, 1993.

    Article  Google Scholar 

  75. B. F. Nielsen, X. Cai, and O. M. Lysaker. On the possibility for computing the transmembrane potential in the heart with a one shot method; an inverse problem. Mathematical Biosciences, 210(2):523–553, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  76. H. Kung, D. Hoyert, J. Xu, and S. Murphy. Final data for 2005. National vital statistics reports. Technical Report vol 56 no 10, National Center for Health Statistics, 2005.

    Google Scholar 

  77. Statens Institut for Folkesundhed. Sundheds- og sygelighedsundersøgelsen 2000. Technical report, Statens Institut for Folkesundhed, 2001.

    Google Scholar 

  78. P. Ginn, B. Jamieson, and M. Mendoza. Clinical inquiries. How accurate is the use of ECGs in the diagnosis of myocardial infarct? The Journal of Family Practice, 55:539–40, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nielsen, B.F. et al. (2010). Can ECG Recordings and Mathematics tell the Condition of Your Heart?. In: Tveito, A., Bruaset, A., Lysne, O. (eds) Simula Research Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01156-6_22

Download citation

Publish with us

Policies and ethics