Skip to main content

Decay of Invincible Clusters of Cooperators in the Evolutionary Prisoner’s Dilemma Game

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5484))

Included in the following conference series:

Abstract

Two types of invincible clusters of cooperators are defined in the one-dimensional evolutionary Prisoner’s Dilemma game. These invincible clusters can either be peaceful or aggressive. The survival of these invincible clusters is discussed in the context of the repeated Prisoner’s Dilemma game with imitation and asynchronous updating procedure. The decay rates for these two types of clusters are analyzed numerically, for all enumeration of the configuration for small chain size. We find characteristic difference in the decay patterns of these two types of invincible clusters. The peaceful invincible clusters experience monotonic exponential decay, while the aggressive ones shows an interesting minimum in the density of cooperators before going through a slow exponential decay at long time. A heuristic argument for the existence of the minima is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Neumann, J., Morgenstern, O.: Theory of games and economic behaviour. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  2. Szabó, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446, 97 (2007)

    Article  MathSciNet  Google Scholar 

  3. Puzzo, M.L.R., Albano, E.V.: The damage spreading method in monte carlo simulations: A brief overview and applications to confined magnetic materials. Comm. Comp. Phys. 4, 207–230 (2008)

    Google Scholar 

  4. Vazquez, F., Eguiluz, V.M., Miguel, M.S.: Generic absorbing transition in coevolution dynamics. Phys. Rev. Lett. 100, 108702 (2008)

    Article  Google Scholar 

  5. Smith, J.M., Price, G.R.: The logic of animal conflict. Nature 246, 15–18 (1973)

    Article  MATH  Google Scholar 

  6. Smith, J.M.: Evolution and the theory of games. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  7. Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006)

    Article  Google Scholar 

  8. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)

    Article  Google Scholar 

  9. Axelrod, R.: The evolution of cooperation. Basic Books, New York (1984)

    MATH  Google Scholar 

  10. Nowak, M.A.: Evolutionary dynamics. Harvard University Press, Cambridge (2006)

    MATH  Google Scholar 

  11. Nowak, M.A., Bonhoeffer, S., May, R.M.: Spatial games and the maintenance of cooperation. P.N.A.S. USA 91, 4877–4881 (1994)

    Article  MATH  Google Scholar 

  12. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Article  Google Scholar 

  13. Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. Int. J. Bifurcat. Chaos 3, 35–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ohtsuki, H., Nowak, M.A.: The replicator equation on graphs. J. Theo. Bio. 243, 86–97 (2006)

    Article  MathSciNet  Google Scholar 

  15. Nowak, M.A., Sasaki, A., Taylor, C., Fudenberg, D.: Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 646–650 (2004)

    Article  Google Scholar 

  16. Nowak, M.A., Sigmund, K.: Evolution of indirect reciprocity. Nature 437, 1291–1298 (2005)

    Article  Google Scholar 

  17. Traulsen, A., Shoresh, N., Nowak, M.A.: Analytical results for individual and group selection of any intensity. B. Math. Biol. 70, 1410–1424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nowak, M.A., Sigmund, K.: Evolutionary dynamics of biological games. Science 303, 793–799 (2004)

    Article  Google Scholar 

  19. Langer, P., Nowak, M.A., Hauert, C.: Spatial invasion of cooperation. J. Theo. Bio. 250, 634–641 (2008)

    Article  MathSciNet  Google Scholar 

  20. Nowak, M.A., Ohtsuki, H.: Prevolutionary dynamics and the origin of evolution. P.N.A.S. USA (to appear, 2008)

    Google Scholar 

  21. Ohtsuki, H., Nowak, M.A.: Evolutionary stability on graphs. J. Theo. Bio. 251, 698–707 (2008)

    Article  MathSciNet  Google Scholar 

  22. Pacheco, J., Traulsen, A., Ohtsuki, H., Nowak, M.A.: Repeated games and direct reciprocity under active linking. J. Theo. Bio. 250, 723–731 (2008)

    Article  MathSciNet  Google Scholar 

  23. Pusch, A., Weber, S., Porto, M.: Impact of topology on the dynamical organization of cooperation in the prisoner’s dilemma game. Phys. Rev. E 77, 036120 (2008)

    Article  MathSciNet  Google Scholar 

  24. Suzuki, R., Kato, M., Arita, T.: Cyclic coevolution of cooperative behaviors and network structures. Phys. Rev. E 77, 021911 (2008)

    Article  Google Scholar 

  25. Perc, M., Szolnoki, A.: Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game. Phys. Rev. E 77, 011904 (2008)

    Article  Google Scholar 

  26. Tanimoto, J.: Dilemma solving by the coevolution of networks and strategy in a 2×2 game. Phys. Rev. E 76, 021126 (2007)

    Article  Google Scholar 

  27. Wu, Z.X., Wang, Y.-H.: Cooperation enhanced by the difference between interaction and learning neighborhoods for evolutionary spatial prisoner’s dilemma games. Phys. Rev. E 75, 041114 (2007)

    Article  Google Scholar 

  28. Gómez-Gardeñes, J., Campillo, M., Floría, L.M., Moreno, Y.: Dynamical organization of cooperation in complex topologies. Phys. Rev. Lett. 98, 108103 (2007)

    Article  Google Scholar 

  29. Perc, M.: Transition from gaussian to levy distributions of stochastic payoff variations in the spatial prisoner’s dilemma game. Phys. Rev. Lett. 98, 108103 (2007)

    Article  Google Scholar 

  30. Wu, Z.X., Xu, X.J., Huang, Z.G., Wang, S.J., Wang, Y.H.: Evolutionary prisoner’s dilemma game with dynamic preferential selection. Phys. Rev. E 74, 021107 (2006)

    Article  MathSciNet  Google Scholar 

  31. Vukov, J., Szabó, G., Szolnoki, A.: Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs. Phys. Rev. E 73, 067103 (2006)

    Article  Google Scholar 

  32. Zimmermann, M.G., Eguíluz, V.M.: Cooperation, social networks, and the emergence of leadership in a prisoner’s dilemma with adaptive local interactions. Phys. Rev. E 72, 056118 (2005)

    Article  MathSciNet  Google Scholar 

  33. Vukov, J., Szabó, G.: Evolutionary prisoner’s dilemma game on hierarchical lattices. Phys. Rev. E 71, 036133 (2005)

    Article  Google Scholar 

  34. Ariosa, D., Fort, H.: Extended estimator approach for 2×2 games and its mapping to the ising hamiltonian. Phys. Rev. E 71, 036133 (2005)

    Article  MathSciNet  Google Scholar 

  35. Frean, M.R., Abraham, E.R.: Adaptation and enslavement in endosymbiont-host associations. Phys. Rev. E 69, 051913 (2004)

    Article  Google Scholar 

  36. Fort, H., Viola, S.: Self-organization in a simple model of adaptive agents playing 2×2 games with arbitrary payoff matrices. Phys. Rev. E 69, 036110 (2004)

    Article  Google Scholar 

  37. Szabó, G., Vukov, J.: Cooperation for volunteering and partially random partnerships. Phys. Rev. E 69, 036107 (2004)

    Article  Google Scholar 

  38. Holme, P., Trusina, A., Kim, B.J., Minnhagen, P.: Prisoners’ dilemma in real-world acquaintance networks: Spikes and quasiequilibria induced by the interplay between structure and dynamics. Phys. Rev. E 68, 030901 (2003)

    Article  Google Scholar 

  39. Fort, H.: Cooperation and self-regulation in a model of agents playing different games. Phys. Rev. E 66, 062903 (2002)

    Article  MathSciNet  Google Scholar 

  40. Szabó, G., Hauert, C.: Evolutionary prisoner’s dilemma games with voluntary participation. Phys. Rev. E 66, 062903 (2002)

    Article  MathSciNet  Google Scholar 

  41. Ebel, H., Bornholdt, S.: Coevolutionary games on networks. Phys. Rev. E 66, 056118 (2002)

    Article  Google Scholar 

  42. Lim, Y.F., Chen, K., Jayaprakash, C.: Scale-invariant behavior in a spatial game of prisoners’ dilemma. Phys. Rev. E 65, 026134 (2002)

    Article  Google Scholar 

  43. Tomochi, M., Kono, M.: Spatial prisoner’s dilemma games with dynamic payoff matrices. Phys. Rev. E 65, 026112 (2002)

    Article  Google Scholar 

  44. Vainstein, M.H., Arenzon, J.J.: Disordered environments in spatial games. Phys. Rev. E 64, 051905 (2001)

    Article  Google Scholar 

  45. Abramson, G., Kuperman, M.: Social games in a social network. Phys. Rev. E 63, 030901 (2001)

    Article  Google Scholar 

  46. Szabó, G., Antal, T., Szabó, P., Droz, M.: Spatial evolutionary prisoner’s dilemma game with three strategies and external constraints. Phys. Rev. E 62, 1095 (2000)

    Article  Google Scholar 

  47. Szabó, G., Vukov, J., Szolnoki, A.: Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices. Phys. Rev. E 72, 047107 (2005)

    Article  Google Scholar 

  48. Brzezniak, Z., Zastawniak, T.: Basic stochastic processes. Springer, Heidelberg (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, C.K., Szeto, K.Y. (2009). Decay of Invincible Clusters of Cooperators in the Evolutionary Prisoner’s Dilemma Game. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2009. Lecture Notes in Computer Science, vol 5484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01129-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01129-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01128-3

  • Online ISBN: 978-3-642-01129-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics