Narrative Scenarios, Mediating Formalisms, and the Agent-Based Simulation of Land Use Change

  • Nicholas M. Gotts
  • J. Gary Polhill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5466)


The kinds of system studied using agent-based simulation are intuitively, and to a considerable extent scientifically, understood through natural language narrative scenarios, and that finding systematic and well-founded ways to relate such scenarios to simulation models, and in particular to their outputs, is important in both scientific and policy-related applications of agent-based simulation. The paper outlines a projected approach to the constellation of problems this raises – which derive from the gulf between the semantics of natural and programming languages. It centers on the use of mediating formalisms: ontologies and specialised formalisms for qualitative representation and reasoning. Examples are derived primarily from ongoing work on the simulation of land use change.


Narrative scenarios qualitative ontologies semantics simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F., Kautz, H.: A model of naive temporal reasoning. In: Hobbs, J., Moore, R. (eds.) Formal Theories of the Commonsense World, Norwood, NJ, pp. 251–268 (1985)Google Scholar
  2. 2.
    Antoniou, G., van Harmelen, F.: Web Ontology Language: OWL. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, ch. 4. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, ch. 1. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Bennett, B.: Spatial reasoning with propositional logics. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Proceedings of the 4th International conference on Principles of Knowledge Representation and Reasoning (KR 1994), pp. 51–62 (1994)Google Scholar
  5. 5.
    Bennett, B.: Modal logics for qualitative spatial reasoning. Bulletin of the Interest Group in Pure and Applied Logic (IGPL) 4(1), 23–45 (1996)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelligence 17(3), 239–251 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chattoe, E.: Why are we simulating anyway? In: Troitszch, K.G., Mueller, U., Gilbert, N., Doran, J.E. (eds.) Some answers from economics. Social Science Microsimulation, pp. 78–104. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Christley, S., Xiang, X., Madey, G.: Ontology for agent-based modeling and simulation. In: Macal, C.M., Sallach, D., North, M.J. (eds.) Proceedings of the Agent 2004 Conference on Social Dynamics: Interaction, Reflexivity and Emergence, co-sponsored by Argonne National Laboratory and The University of Chicago, October 7-9 (2004),
  9. 9.
    Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M.: RCC: a calculus for region based qualitative spatial reasoning. Geoinformatica 1, 275–316 (1997)CrossRefGoogle Scholar
  10. 10.
    Cooper, A.: The impact of interest rates and the housing market on the UK economy. Economic Outlook 28, 10–18 (2004)CrossRefGoogle Scholar
  11. 11.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL 2002), Philadelphia (July 2002)Google Scholar
  12. 12.
    Davis, E., Gotts, N.M., Cohn, A.G.: Constraint networks of topological relations and complexity. Constraints 4, 241–280 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dean, J.S., Gumerman, G.J., Epstein, J.M., Axtell, R.L., Swedlund, A.C., Parker, M.T., McCarroll, S.: Understanding Anasazi culture change through agent-based modelling. In: Kohler, T., Gumerman, G. (eds.) Dynamics in Human and Primate Societies, pp. 179–205. Oxford University Press, Oxford (1999)Google Scholar
  14. 14.
    Edmonds, B., Hales, D.: Replication, replication and replication: Some hard lessons from model alignment. Journal of Artificial Societies and Social Simulation 6(4),
  15. 15.
    European Environment Agency, Scenarios as Tools for International Environmental Assessments, Environmental issue report No. 24, Luxembourg Office for Official Publications of the European Communities (2001)Google Scholar
  16. 16.
    Feng, Y., Goldstone, R., Menkov, V.: A graph matching algorithm and its application to conceptual system translation. International Journal on Artificial Intelligence Tools 14(1-2), 77–99 (2004)Google Scholar
  17. 17.
    Gotts, N.M.: An axiomatic approach to topology for spatial information systems. Technical report 96.25, School of Computer Studies, University of Leeds (1996)Google Scholar
  18. 18.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  19. 19.
    Grzegorczyk, A.: Undecidability of some topological theories. Fundamenta Mathematicae 38, 137–152 (1951)MathSciNetGoogle Scholar
  20. 20.
    Kay, D., Prüss, A., Corvalan, C.: Methodology for assessment of environmental burden of disease: Report on the ISEE session on environmental burden of disease, Buffalo. WHO/SDE/WSH/00.7 (August 22, 2000),
  21. 21.
    Kuipers, B.: Qualitative Simulation. In: Meyers, R.A. (ed.) Encyclopedia of Physical Science and Technology, 3rd edn., pp. 287–300 (2001)Google Scholar
  22. 22.
    Lansing, J.S., Kremer, J.N.: Emergent properties of Balinese water temple networks: coadaptation on a rugged fitness landscape. In: Langton, C.G. (ed.) Artificial life III, pp. 201–223. Addison-Wesley, Reading (1994)Google Scholar
  23. 23.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.: (2003)Google Scholar
  24. 24.
    The WonderWeb Library of Foundational Ontologies Final Report WonderWeb Deliverable D18, version 1.0, IST Programme of the Commission of the European Communities project number IST-2001-33052Google Scholar
  25. 25.
    Plotkin, G.D.: A Structural Approach to Operational Semantics, Tech. Rep. DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark (1981)Google Scholar
  26. 26.
    Polhill, J.G., Gotts, N.M.: A new approach to modelling frameworks. In: First World Conference on Social Simulation (WCSS 2006), Kyoto, Japan, August 21-25 (2006)Google Scholar
  27. 27.
    Polhill, J.G., Ziervogel, G.: Using ontologies with case studies: an end-user perspective on OWL. In: Second National Conference on e-Social Science (NceSS 2006), Manchester, June 29-30 (2006)Google Scholar
  28. 28.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Nebel, B., Swartout, W., Rich, C. (eds.) Proceedings of Third International Conference on Principles of Knowledge Representation and Reasoning, Cambridge, Massachusetts, pp. 165–176. Morgan Kaufman, San Francisco (1992)Google Scholar
  29. 29.
    Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the Region Connection Calculus. Artificial Intelligence 108, 69–123 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Riolo, R.L., Cohen, M.D., Axelrod, R.: Evolution of cooperation without reciprocity. Nature 411, 441–443 (2001)CrossRefGoogle Scholar
  31. 31.
    Schmalberger, T.: Dangerous Liasons: A Theory of Threat Relationships in International Politics. PhD thesis, available online (1998),
  32. 32.
    Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language Semantics. MIT Press, Cambridge (1977)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nicholas M. Gotts
    • 1
  • J. Gary Polhill
    • 1
  1. 1.Macaulay Institute, AberdeenScotland, UK

Personalised recommendations