Reconstruction Failures: Questioning Level Design

  • Camille Roth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5466)


In front of unsuccessful models and simulations, we suggest that reductionist and emergentist attitudes may make it harder to detect ill-conceived modeling ontology and subsequent epistemological dead-ends. We argue that some high-level phenomena just cannot be explained and reconstructed from unsufficiently informative lower levels. This eventually requires a fundamental viewpoint change in not only low-level dynamics but also in the design of low-level objects themselves, considering distinct levels of description as just distinct observations on a single process.


Modeling Methodology Reconstruction Emergence Downward Causation Complex Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, P.: More is different. Science 177, 393–396 (1972)CrossRefGoogle Scholar
  2. 2.
    Bedau, M.A.: Weak emergence. In: Tomberlin, J. (ed.) Philosophical perspectives: Mind, causation, and world, vol. 11, pp. 375–399. Malden, Blackwell (1997)Google Scholar
  3. 3.
    Bitbol, M.: Ontology, matter and emergence. Phenomenology and the cognitive science (to appear, 2006)Google Scholar
  4. 4.
    Bonabeau, E., Dessalles, J.-L.: Detection and emergence. Intellectica 25(2), 85–94 (1997)Google Scholar
  5. 5.
    Campbell, D.T.: Downward causation. In: Ayala, F., Dobzhansky, T. (eds.) Hierarchically Organized Biological Systems. Studies in the philosophy of biology, pp. 179–186. Macmillan Press, Basingstoke (1974)Google Scholar
  6. 6.
    Clark, A.: Emergence and Explanation. In: Being there: Putting brain, body, and world together again, ch. 6, pp. 103–128. MIT Press, Cambridge (1996)Google Scholar
  7. 7.
    Crutchfield, J.P.: The calculi of emergence: Computation, dynamics, and induction. Physica D 75, 11–54 (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Deroian, F.: Formation of social networks and diffusion of innovations. Research policy 31, 835–846 (2002)CrossRefGoogle Scholar
  9. 9.
    Destexhe, A., Marder, E.: Plasticity in single neuron and circuit computations. Nature 431, 789–795 (2004)CrossRefGoogle Scholar
  10. 10.
    Emmeche, C., Koppe, S., Stjernfelt, F.: Levels, emergence, and three versions of downward causation. In: Andersen, P.B., Emmeche, C., Finnemann, N.O., Christiansen, P.V. (eds.) Downward causation. Minds, bodies and matter, pp. 13–34. Aarhus University Press, Aarhus (2000)Google Scholar
  11. 11.
    Epstein, J.M.: Remarks on the foundations of agent-based generative social science. Tech. rept. 00506024. Santa Fe Institute (2005)Google Scholar
  12. 12.
    Gershenson, C., Heylighen, F.: When can we call a system self-organizing? In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 606–614. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Humphreys, P.: Emergence, not supervenience. Philosophy of science 64, S337–S345 (1997)CrossRefGoogle Scholar
  14. 14.
    Hüttemann, A.: Explanation, emergence, and quantum entanglement. Philosophy of science 72(1), 114–127 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kim, J.: Mind in a physical world. MIT Press, Cambridge (1998)Google Scholar
  16. 16.
    Kim, J.: Making sense of emergence. Philosophical studies 95, 3–36 (1999)CrossRefGoogle Scholar
  17. 17.
    Küppers, G., Lenhard, J.: Validation of simulation: Patterns in the social and natural sciences. Journal of artificial societies and social simulation 8(4) (2005),
  18. 18.
    Lane, D.A.: Hierarchy, complexity, society. In: Hierarchy in natural and social sciences. Methodos Series, vol. 3. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Laughlin, R.B., Pines, D., Schmalian, J., Stojkovic, B.P., Wolynes, P.: The middle way. PNAS 97(1), 32–37 (2000)CrossRefGoogle Scholar
  20. 20.
    McGregor, S., Fernando, C.: Levels of description: A novel approach to dynamical hierarchies. Artificial life 11(4), 459–472 (2005)CrossRefGoogle Scholar
  21. 21.
    Nilsson-Jacobi, M.: Hierarchical organization in smooth dynamical systems. Artificial life 11(4), 493–512 (2005)CrossRefGoogle Scholar
  22. 22.
    Pfrieger, F.W., Barres, B.A.: New views on synapse-glia interactions. Current opinion in neurobiology 6, 615–621 (1996)CrossRefGoogle Scholar
  23. 23.
    Pumain, D.: Scaling laws and urban systems. SFI Working Paper 04-02-002 (2004)Google Scholar
  24. 24.
    Roth, C.: Empiricism for descriptive social network models. Physica A 378(1), 53–58 (2007)CrossRefGoogle Scholar
  25. 25.
    Rueger, A.: Robust supervenience and emergence. Philosophy of science 67(3), 466–489 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Shalizi, C.R.: Causal architecture, complexity and self-organization in time series and cellular automata, ch. 11. Ph.D. thesis, University of Wisconsin at Madison, U.S.A. (2001)Google Scholar
  27. 27.
    Shalizi, C.R., Shalizi, K.R.: Blind construction of optimal non-linear recursive predictors for discrete sequences. In: Chickering, M., Halpern, J. (eds.) Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 504–511 (2004)Google Scholar
  28. 28.
    Turner, H., Stepney, S.: Rule migration: Exploring a design framework for modelling emergence in CA-like systems. In: ECAL Workshop on Unconventional Computing (2005) (to appear in International Journal of Unconventional Computing)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Camille Roth
    • 1
    • 2
  1. 1.Centre d’Analyse et de Mathématique Sociales CNRS/EHESSParisFrance
  2. 2.CREA Ecole Polytechnique/CNRS 1ParisFrance

Personalised recommendations