Of late, due to the perceived advantages of the generative paradigm (Epstein 2002, 2005; Arthur 2004), a generative variant of agent based modelling and simulation, i.e. Agent Based Generative Social Simulation (ABGSS), has received a great impulse. In this paper, weak ABGSS, i.e. the thesis that growing a social effect is necessary but insufficient to explain it, is supported. Casting a critical eye on the debate about generative simulation, it will be argued that ABGSS needs to be fed by, but at the same time provides feedback to, two theoretical complxements which must be formulated prior and independent of simulation itself: (a) bottom-up theory of general local rules, and of the process from them to macroscopic effects; (b) theory of downward causation, showing how local rules are modified by the effects they contribute to achieve. This twofold thesis will be carried out while discussing three main examples of social phenomena: the witness effect, Schelling’s segregation model and the ethnic homogeneity of violence, and the minority game.


Agent-based generative social simulation bottom-up theory top-down theory multiple realizability social emergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arthur, B.: Out-of-equilibrium Economico and Agent-Based Modelling. In: Judd, K., Tesfatsion, L. (eds.) Handbook of computational economics. Agent Based Computational Economics, vol. 2. Elsevier, Amsterdam (2005)Google Scholar
  2. 2.
    Axelrod, R.: A Model of the Emergence of New Political Actors. In: Gilbert, N., Conte, R. (eds.) Artificial Societies: the Computer Simulation of Social Life. University College Press, London (1995)Google Scholar
  3. 3.
    Bechtel, W., Mundale, J.: Multiple Realizability Revisited. In: Proc. Australian Cognitive Science Society (1997)Google Scholar
  4. 4.
    Bickhard, M.H.: Anticipation and Representation. In: AAAI Fall Symposium, From Reactive to Anticipatory Cognitive Embodied Systems, Hyatt Crystal City in Arlington, Virginia, November 3-6 (2005)Google Scholar
  5. 5.
    Castelfranchi, C.: Mind as an Anticipatory Device: For a Theory of Expectations. In: AAAI Fall Symposium, From Reactive to Anticipatory Cognitive Embodied Systems, Hyatt Crystal City in Arlington, Virginia, November 3-6 (2005)Google Scholar
  6. 6.
    Conte, R.: Artificial Social Intelligence: a necessity for agents’ systems developments. Knowledge Engineering Review 14(1), 1–10 (1999)CrossRefGoogle Scholar
  7. 7.
    Dean, J.S., Gumerman, G.J., Epstein, J., Axtell, R.L., Swedland, A.C., Parker, M.T., MacCarrol, S.: Understanding Anasazi Culture Ch’ange Through Agent Based Modeling. In: Kohler, T.A., Gumerman, G.J. (eds.) Dynamics in Human and Primate Societies: Agent Based Modeling of Social and Spatial Processes. Oxford University Press, New York (1999)Google Scholar
  8. 8.
    Dennett, D.: Darwin’s Dangerous Idea. Simon & Schuster, New York (1995)Google Scholar
  9. 9.
    Gilbert, N.: Varieties of emergence. In: Proceedings of Agent 2002 Conference: Social agents: ecology, exchange, and evolution, Chicago, pp. 41–46 (2002)Google Scholar
  10. 10.
    Di Tosto, G., Paolucci, M., Conte, R.: Altruism Among Simple and Smart Vampires. International Journal of Cooperative Information Systems (in press)Google Scholar
  11. 11.
    Fontana, M.: Computer Simulation, Mathematics, and Economics. CESMEP, Torino Dip. Economia S. Cognetti de Martiis, Working Paper No. 06/2005Google Scholar
  12. 12.
    Epstein, J.M.: Generative Social Science. Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton (2007)Google Scholar
  13. 13.
    Epstein, J.M., Hammond, R.A.: Non-explanatory equilibria in extremely simple game with (mostly) unattainable fixed points. Complexity 7(4) (2002)Google Scholar
  14. 14.
    Epstein, J.M.: Remarks on the Foundations of Agent-Based Generative Social Science, The Brookings Institute, Washington, DC, CSED Working Paper No. 41 (2005)Google Scholar
  15. 15.
    Epstein, J.M.: Agent-based computational models and generative social science. Complexity 4(5), 41–57 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gruene-Yanoff, T.: The Explanatory Potential of Artificial Societies (2007),
  17. 17.
    Hale, B.: Absolute Necessities, Noûs. Supplement: Philosophical Perspectives, Metaphysics 30(10), 93–117 (1996)Google Scholar
  18. 18.
    Hall, N.: Two Concepts of Causation. In: Collins, J., Hall, N., Paul, L.A. (eds.) Causation and Counterfactuals. MIT Press, Cambrdige (2004)Google Scholar
  19. 19.
    Harré, R.: Peripheral Vision. Discursive Psychology and the Boundaries of Sense. Organization Studies 25(8), 1435–1453 (2004)CrossRefGoogle Scholar
  20. 20.
    Hartmann, S.: The world as a process. In: Hegselmann, R., et al. (eds.) Modelling and Simulation in the Social Sciences from a Philosophy of Science Point of View, pp. 77–100. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  21. 21.
    Hume (1739)Google Scholar
  22. 22.
    Janich, P., Psarros, N. (eds.): The Autonomy of Chemistry. 3rd Erlenmeyer-Colloquy for the Philosophy of Chemistry, Würzburg, Königshausen & Neumann (1998)Google Scholar
  23. 23.
    Kelly, M.: Inequality and Crime. The Review of Economics and Statistics 82(4), 530–539 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kim, J.: Physicalism, or Something Near Enough. Princeton University Press, Princeton (2005)Google Scholar
  25. 25.
    Latané, B., Darley, J.M.: The unresponsive bystander: Why doesn’t he help? Prentice Hall, Englewood Cliffs (1970)Google Scholar
  26. 26.
    Lewis, D.: Convention: A Philosophical Study (1969)Google Scholar
  27. 27.
    Lorini, E., Falcone, R.: Modelling Expectations in Cognitive Agents. In: AAAI Fall Symposium, From Reactive to Anticipatory Cognitive Embodied Systems, Hyatt Crystal City in Arlington, Virginia, November 3-6 (2005)Google Scholar
  28. 28.
    Marx, K., Engels, F.: Selected Works. Lawrence and Wishart, London (1968)Google Scholar
  29. 29.
    Paolucci, M., Conte, R., Di Tosto, G.: A Model of Social Organization and the Evolution of Food Sharing in Vampire Bats. Adaptive Behavior 14(3), 223–239 (2006)CrossRefGoogle Scholar
  30. 30.
    Pedone, R., Conte, R.: The Simmel Effect: Imitation and Avoidance in Social Hierarchies. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS, vol. 1979, pp. 149–156. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  31. 31.
    Sawyer, R.K.: The Mechanisms of Emergence. Philosophy of the Social Sciences 34(2), 260–282 (2004)CrossRefGoogle Scholar
  32. 32.
    Schelling, T.C.: Dynamic Models of Segregation. Journal of Mathematical Sociology 1, 143–186 (1971)CrossRefGoogle Scholar
  33. 33.
    Simon, H.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1969/1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rosaria Conte
    • 1
  1. 1.LABSS - Laboratory of Agent-Based Social SimulationISTC/CNRRomeItaly

Personalised recommendations