The idea of noise is now widespread in many fields of study. However to a large extent the use of this term is unexamined. It has become part of the practice of science without entering to a significant extent as part of its explicit theory. Here I try to produce a clearer and more coherent account of the term. I start with a picture of noise from electrical engineering. I then generalise this to the widest conception: that of noise as what is unwanted. A closely related conception is noise as what is unexplained. A particular case of this later usage is where a source of randomness can be used to stand-in for this residual. I argue that noise and randomness are not the same. I explore the possible relation between noise and context, and propose a new conception of noise: namely that noise is what can result from an extra-contextual signal. I finish with an application of the analysis of noise to the relation of determinism and randomness.


Noise relevance modelling explanation randomness residual context determinism philosophy science 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, P.W.: Some Thoughts About Distribution in Economics. In: Arthur, W.B., Durlaf, S.N., Lane, D.A. (eds.) The Economy as an Evolving Complex System II, p. 566. Addison-Wesley, Reading (1997)Google Scholar
  2. 2.
    Andersen, J.V., Sornette, D.: Have Your Cake and Eat It, Too: Increasing Returns While Lowering Large Risks! Journal of Risk Finance 2(3), 70–82 (2001)CrossRefGoogle Scholar
  3. 3.
    ARUP, The Millennium Bridge. ARUP’s (the engineer’s) site on the Millennium Bridge (2001) (accessed May 15, 2003),
  4. 4.
    BBC News, The Millennium Bridge. A BBC News report on the Millennium Bridge (2000) (accessed May 15, 2003), .
  5. 5.
    Black, F.: Noise. Journal of Finance 41, 529–543 (1986)CrossRefGoogle Scholar
  6. 6.
    Blake, W.J., Kaern, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422(6932), 633–637 (2003)CrossRefGoogle Scholar
  7. 7.
    Boffetta, G., Cencini, M., Falcioni, M., Vulpiani, A.: Predictability: a way to characterize complexity. Physics Reports 356(6), 367–474 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cartwright, N.: How the Laws of Physics Lie. Oxford University Press, Oxford (1983)CrossRefGoogle Scholar
  9. 9.
    Compagner, A.: Definitions of Randomness. American Journal of Physics 59(8), 700–705 (1991)CrossRefGoogle Scholar
  10. 10.
    Delong, J.B., Shleifer, A., Summers, L., Waldmann, R.J.: Noise trader risk in financial markets. Journal of Political Economy 98, 703–738 (1990)CrossRefGoogle Scholar
  11. 11.
    Dichev, I.: News or noise? Estimating the noise in the US News university rankings. Research In Higher Education 42(3), 237–266 (2001)CrossRefGoogle Scholar
  12. 12.
    Edmonds, B.: Modelling Bounded Rationality In Agent-Based Simulations using the Evolution of Mental Models. In: Brenner, T. (ed.) Computational Techniques for Modelling Learning in Economics, pp. 305–332. Kluwer, Dordrecht (1999a)CrossRefGoogle Scholar
  13. 13.
    Edmonds, B.: The Pragmatic Roots of Context. In: Bouquet, P., Serafini, L., Brézillon, P., Benercetti, M., Castellani, F. (eds.) CONTEXT 1999. LNCS, vol. 1688, pp. 119–132. Springer, Heidelberg (1999b)CrossRefGoogle Scholar
  14. 14.
    Einstein, A.: Investigations on the Theory of Brownian Movement. Annalen der Physik 17, 549 (1905) (A.D. Cowper transl.), Methuen, London (1926) and Dover, New York (1956)CrossRefGoogle Scholar
  15. 15.
    Gupta, M. (ed.): Electrical Noise: Fundamentals and Sources, pp. 51–58. IEEE Press, Los Alamitos (1977)Google Scholar
  16. 16.
    Habermas, J.: Theorie und Praxis. Suhrkamp Verlag, Frankfurt am Main (1963) (English trans. Viertal, J.: Theory and practice. Polity Press (1988))Google Scholar
  17. 17.
    Hesse, M.B.: Models and Analogies in Science. London, Sheed and Ward (1963)Google Scholar
  18. 18.
    Hughes, R.G.: Models and Representation. Philosophy of Science 64(proc.), S325–S336 (1997)CrossRefGoogle Scholar
  19. 19.
    Kaneko, K.: Globally Coupled Chaos Violates the Law of Large Numbers but not the Central Limit Theorem. Physics Review Letters 65, 1391–1394 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kolmogorov, A.: Three Approaches to the Quantitative Definition of Information. Problems of Information Transmission 1, 1–17 (1965)zbMATHGoogle Scholar
  21. 21.
    L’Ecuyer, P.: Testing Random Number Generators. In: Proceedings of the 1992 Winter Simulation Conference, pp. 305–313 (1992)Google Scholar
  22. 22.
    Peterson, I.: Lava lamp randomness. Science News 152, 92 (1997), Google Scholar
  23. 23.
    Pierce, J.: Physical Sources of Noise. In: Proc. IRE, vol. 44, pp. 601–608 (1956) (reprinted in (Gupta 1977), 51–58)Google Scholar
  24. 24.
    Ritter, T.: Random Electrical Noise: A Literature Survey (2003) (accessed May 15, 2003),
  25. 25.
    Suppes, P.: Models of Data. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Proceedings of the 1960 International Congress on Logic Methodology and the Philosophy of Science, pp. 252–261. Stanford University Press, CA (1962)Google Scholar
  26. 26.
    van Kampen, N.G.: Foreword: The Theory Of Noise. Fluctuation and Noise Letters 1(1), 3–7 (2001)CrossRefGoogle Scholar
  27. 27.
    Wong, H.: Low-frequency noise study in electron devices: review and update. Microelectronics Reliability 43(4), 585–599 (2003)CrossRefGoogle Scholar
  28. 28.
    Zadeh, L.H.: Fuzzy Sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bruce Edmonds
    • 1
  1. 1.Centre for Policy ModellingManchester Metropolitan UniversityUK

Personalised recommendations