Advertisement

Abductive Fallacies with Agent-Based Modeling and System Dynamics

  • Tobias Lorenz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5466)

Abstract

Increasing usage of computer simulation as a method of pursuing science makes methodological reflection immanently important. After discussing relevant philosophical positions Winsberg’s view of simulation modeling is adapted to conceptualize simulation modeling as an abductive way of doing science. It is proposed that two main presuppositions determine the outcome of a simulation: theory and methodology. The main focus of the paper is on the analysis of the role of simulation methodologies in simulation modeling. The fallacy of applying an inadequate simulation methodology to a given simulation task is dubbed ‘abductive fallacy’. In order to facilitate a superior choice of simulation methodology three respects are proposed to compare System Dynamics and Agent-based Modeling: structure, behavior and emergence. These respects are analyzed on the level of the methodology itself and verified in case studies of the WORLD3-model and the Sugarscape model.

Keywords

Abduction System Dynamics Agent-based Modeling Methodology Multi-Paradigm Modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brassel, K., Möhring, M., Schumacher, E., Troitzsch, K.: Can agents cover all the world? In: Conte, R., Hegselmann, R., Terna, P. (eds.) Simulating social phenomena, pp. 55–72. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Casti, J.: Would-Be Worlds: How simulation is changing the frontiers of science. John Wiley & Sons, New York (1997)Google Scholar
  3. 3.
    Corning, P.: The re-emergence of ‘emergence: a venerable concept in search of a theory. Complexity 7(6), 18–30 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Epstein, J., Axtell, R.: Growing artificial societies. MIT Press, Washington (1996)Google Scholar
  5. 5.
    Giere, R.: How models are used to represent reality. Philosophy of science 71, 742–752 (2004)CrossRefGoogle Scholar
  6. 6.
    Gilbert, N., Troitzsch, K.: Simulation for the social scientist. Open University Press, Buckingham (1999)Google Scholar
  7. 7.
    Grebel, T., Pyka, A.: Agent-based modelling – A methodology for the analysis of qualitative development processes, 2004. In: Lombardi, M., Squazzoni, F. (eds.) Saggi di economia evolutiva, FrancoAngeli, Milano (2005)Google Scholar
  8. 8.
    Lorenz, T., Bassi, A.: Comprehensibility as a discrimination criterion for Agent-Based Modelling and System Dynamics: An empirical approach. In: Proceedings of the 23rd International Conference of the System Dynamics Society, Boston (2005), http://www.systemdynamics.org/conferences/2005/proceed/papers/BASSI175.pdf
  9. 9.
    Lorenz, T., Jost, A.: Towards an orientation-framework for multiparadigm modeling. In: Größler, et al. (eds.) Proceedings of the 24th international conference of the System Dynamics Society, Nijmegen (2006), http://www.systemdynamics.org/conferences/2006/proceed/papers/LOREN178.pdf
  10. 10.
    Meadows, D.H., Meadows, D.L., Randers, J., Behrens, W.: The limits to growth. Universe Books, New York (1972)Google Scholar
  11. 11.
    Meadows, D., Robinson, J.: The electronic oracle. John Wiley & Sons, Chichester (1985)Google Scholar
  12. 12.
    Morgan, M.: Experiments without Material Intervention. In: Raader, H. (ed.) The Philosophy of Scientific Experimentation, pp. 216–235. University of Pittsburgh Press, Pittsburgh (2003)Google Scholar
  13. 13.
    Morrison, M., Morgan, M.: Models as mediating instruments. In: Morgan, M., Morrison, M. (eds.) Models as mediators, pp. 10–37. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  14. 14.
    Morrison, M.: Models as autonomous agents. In: Morgan, M., Morrison, M. (eds.) Models as mediators, pp. 38–65. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  15. 15.
    Moss, S., Edmonds, B.: Towards good social science. JASS 8(4) (2005)Google Scholar
  16. 16.
    Oreskes, N.: Why believe a computer? In: Schneiderman, J. (ed.) The earth around us: Maintaining a livable planet, pp. 70–82. W.H. Freeman & Company, San Francisco (2000)Google Scholar
  17. 17.
    Parunak, H., Savit, R., Riolo, R.: Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users’ Guide. In: Proceedings of Workshop on Modeling Agent Based Systems, pp. 10–25 (1998)Google Scholar
  18. 18.
    Phelan, S.: A Note on the Correspondence Between Complexity and Systems Theory. Systemic Practice and Action Research 12(3), 237–246 (1999)CrossRefGoogle Scholar
  19. 19.
    Sawyer, R.: Simulating emergence and downward causation in small groups. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS, vol. 1979, pp. 49–67. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Schieritz, N., Milling, P.: Modeling the Forest or Modeling the Trees. In: Proceedings of the 21st International Conference of the System Dynamics Society (2003)Google Scholar
  21. 21.
    Sterman, J.: Business Dynamics. Systems Thinking and Modeling for a Complex World. McGraw-Hill, Boston (2000)Google Scholar
  22. 22.
    Winsberg, E.: Sanctioning Models: The epistemology of simulation. Science in context 12(2), 275–292 (1999)CrossRefGoogle Scholar
  23. 23.
    Winsberg, E.: The hierarchy of models in simulation. In: Magnani, L., Nersessian, N., Thagard, P. (eds.) Model-based reasoning in Scientific discovery. Springer, New York (1999)Google Scholar
  24. 24.
    Winsberg, E.: Simulated experiments: methodology for a virtual world. Philosophy of science 70, 105–125 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tobias Lorenz
    • 1
  1. 1.Stiftung Wertevolle ZukunftHamburgGermany

Personalised recommendations