Skip to main content

Distributed Model Predictive Control System Design Using Lyapunov Techniques

  • Chapter
  • 10k Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 384))

Abstract

In this work, we introduce a distributed control method for nonlinear process systems in which two different controllers have to coordinate their actions to regulate the state of the system to a given equilibrium point. This class of systems arises naturally when new sensors, actuators and controllers are added to already operating control loops to improve closed-loop performance and fault tolerance, taking advantage from the latest advances in wireless technology. Assuming that there exists a Lyapunov-based controller that stabilizes the closed-loop system using the pre-existing control loops, we propose to use Lyapunov-based model predictive control to design two different predictive controllers that coordinate their actions in an efficient fashion. Specifically, the proposed distributed control design preserves the stability properties of the Lyapunov-based controller, improves the closed-loop performance and is computationally more efficient compared to the corresponding centralized MPC design. The theoretical results are demonstrated using a chemical process example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neumann, P.: Communication in industrial automation - what is going on? Control Engineering Practice 15, 1332–1347 (2007)

    Article  Google Scholar 

  2. Christofides, P.D., Davis, J.F., El-Farra, N.H., Clark, D., Harris, K.R.D., Gipson, J.N.: Smart plant operations: Vision, progress and challenges. AIChE Journal 53, 2734–2741 (2007)

    Article  Google Scholar 

  3. Camponogara, E., Jia, D., Krogh, B.H., Tulukdar, S.: Distributed model predictive control. IEEE Control System Magazine 22, 44–52 (2002)

    Article  Google Scholar 

  4. Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42, 549–558 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Richards, A., How, J.P.: Robust distributed model predictive control. International Journal of Control 80, 1517–1531 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jia, D., Krogh, B.: Min-max feedback model predictive control for distributed control with communication. In: Proceedings of the American Control Conference, Anchorage, pp. 4507–4512 (2002)

    Google Scholar 

  7. Venkat, A.N., Rawlings, J.B., Wright, S.J.: Stability and optimality of distributed model predictive control. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference ECC 2005, Seville, Spain, pp. 6680–6685 (2005)

    Google Scholar 

  8. Raimondo, D.M., Magni, L., Scattolini, R.: Decentralized MPC of nonlinear systems: An input-to-state stability approach. International Journal of Robust and Nonlinear Control 17, 1615–1667 (2007)

    Article  MathSciNet  Google Scholar 

  9. Keviczky, T., Borrelli, F., Balas, G.J.: Decentralized receding horizon control for large scale dynamically decoupled systems. Automatica 42, 2105–2115 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sun, Y., El-Farra, N.H.: Quasi-decentralized model-based networked control of process systems. Computers and Chemical Engineering 32, 2016–2029 (2008)

    Article  Google Scholar 

  11. Liu, J., Muñoz de la Peña, D., Ohran, B., Christofides, P.D., Davis, J.F.: A two-tier architecture for networked process control. Chemical Engineering Science 63, 5349–5409 (2008)

    Google Scholar 

  12. Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Transactions on Automatic Control 50, 1670–1680 (2005)

    Article  MathSciNet  Google Scholar 

  13. Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control. Systems and Control Letters 55, 650–659 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Muñoz de la Peña, D., Christofides, P.D.: Lyapunov-based model predictive control of nonlinear systems subject to data losses. IEEE Transactions on Automatic Control 53, 2076–2089 (2008)

    Article  Google Scholar 

  15. Massera, J.L.: Contributions to stability theory. Ann. of Math 64, 182–206 (1956)

    Article  MathSciNet  Google Scholar 

  16. Lin, Y., Sontag, E.D., Wang, Y.: A Smooth Converse Lyapunov Theorem for Robust Stability. SIAM J. Control and Optimization 34, 124–160 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Primbs, J.A., Nevistic, V., Doyle, J.C.: A receding horizon generalization of pointwise min-norm controllers. IEEE Transactions on Automatic Control 45, 898–909 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kothare, S.L.D., Morari, M.: Contractive model predictive control for constrained nonlinear systems. IEEE Transactions on Automatic Control 45, 1053–1071 (2000)

    Article  MATH  Google Scholar 

  19. Sontag, E.: A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization. System and Control Letters 13, 117–123 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Christofides, P.D., El-Farra, N.H.: Control of nonlinear and hybrid process systems: Designs for uncertainty, constraints and time-delays. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, J., de la Peña, D.M., Christofides, P.D. (2009). Distributed Model Predictive Control System Design Using Lyapunov Techniques. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds) Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01094-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01094-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01093-4

  • Online ISBN: 978-3-642-01094-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics