Skip to main content

Automated Incremental Building of Weighted Semantic Web Repository

  • Chapter
Book cover Foundations of Computational, IntelligenceVolume 6

Part of the book series: Studies in Computational Intelligence ((SCI,volume 206))

Summary

The chapter introduces an incremental algorithm creating a selforganizing repository and it describes the processes needed for updates and inserts into the repository, especially the processes updating estimated structure driving data storage in the repository. The process of building repository is foremost aimed at allowing the well-known Semantic web tools to query data presented by the current web sources. In order to respect features of current web documents, the relationships should be at least weighted by an additional indirect criteria, which allow the query result to be sorted accordingly to an estimated quality of data provided by web sources. The relationship weights can be based on relationship soundness or on the reputation of the source providing them. The extension of the relationships by the weights leads to the repository able to return a query result as complete as possible, where (possibly) inconsistent parts are sorted by the relationships weights.

The work was supported by the project 1M0554 ”Advanced Remedial Processes and Technologies” and partly by the Institutional Research Plan AV0Z10300504 “Computer Science for the Information Society: Models, Algorithms, Applications”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raghavan, P.: Information retrieval algorithms: a survey. In: SODA 1997: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 11–18. Society for Industrial and Applied Mathematics (1997)

    Google Scholar 

  2. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  3. Antoniou, G., van Harmelen, F.: A Semantic Web Primer (Cooperative Information Systems). MIT Press, Cambridge (2004)

    Google Scholar 

  4. Pivk, A.: Automatic ontology generation from web tabular structures. AI Communications (2005)

    Google Scholar 

  5. Flach, P.A., Savnik, I.: Database dependency discovery: A machine learning approach. AI Communications 12(3), 139–160 (1999)

    MathSciNet  Google Scholar 

  6. Date, C.J.: An Introduction to Database Systems. Addison Wesley Longman (October 1999)

    Google Scholar 

  7. Řimnáč, M.: Data structure estimation for rdf oriented repository building. In: Proceedings of the CISIS 2007, pp. 147–154. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  8. Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Mannila, H., Räithä, K.J.: Design by example: An applications of armstrong relations. Journal of computer and system sciences 33, 129–141 (1986)

    Article  Google Scholar 

  10. Mannila, H., Räihä, K.J.: Dependency inference. In: Proc. of VLDB, pp. 155–158 (1987)

    Google Scholar 

  11. Mannila, H., Räithä, K.J.: Algorithms for inferring functional dependencies from relations. Data & Knowledge Engineering 12, 83–99 (1994)

    Article  MATH  Google Scholar 

  12. Akutsu, T., Miyano, S., Kuhara, S.: A simple greedy algorithm for finding functional relations: efficient implementation and average case analysis. Theoretical Computer Science 292, 481–495 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Simon, K.: On minimum flow and transitive reduction. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 535–546. Springer, Heidelberg (1988)

    Google Scholar 

  14. Simon, K.: Finding a minimal transitive reduction in a strongly connected digraph within linear time. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 245–259. Springer, Heidelberg (1990)

    Google Scholar 

  15. Giannella, C., Robertson, E.: On approximation measures for functional dependencies. In: ADBIS 2002: Advances in databases and information systems, pp. 483–507. Elsevier, Amsterdam (2004)

    Google Scholar 

  16. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal: Very Large Data Bases 10(4), 334–350 (2001)

    Article  MATH  Google Scholar 

  17. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Mitra, P., Wiederhold, G., Jannink, J.: Semi-automatic integration of knowledge sources. In: Proc. of the 2nd Int. Conf. On Information FUSION 1999 (1999)

    Google Scholar 

  19. Do, H.-H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS, vol. 2593, pp. 221–237. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS 2002: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of Database Systems, pp. 233–246. ACM Press, New York (2002)

    Chapter  Google Scholar 

  21. Nottelmann, H., Straccia, U.: Information retrieval and machine learning for probabilistic schema matching. Information Processing and Management 43, 552–576 (2007)

    Article  Google Scholar 

  22. Su, X., Gulla, J.A.: An information retrieval approach to ontology mapping. Data Knowl. Eng. 58(1), 47–69 (2006)

    Article  Google Scholar 

  23. Yi, S., Huang, B., Chan, W.T.: Xml application schema matching using similarity measure and relaxation labeling. Inf. Sci. 169(1-2), 27–46 (2005)

    Article  MATH  Google Scholar 

  24. Do, H.-H., Rahm, E.: Matching large schemas: Approaches and evaluation. Inf. Syst. 32(6), 857–885 (2007)

    Article  Google Scholar 

  25. Xu, L., Embley, D.W.: A composite approach to automating direct and indirect schema mappings. Inf. Syst. 31(8), 697–732 (2006)

    Article  Google Scholar 

  26. Li, N., Mitchell, J.: A role-based trust-management framework. In: DARPA Information Survivability Conference and Exposition (DISCEX), Washington, D.C. (April 2003)

    Google Scholar 

  27. Basney, J., Nejdl, W., Olmedilla, D., Welch, V., Winslett, M.: Negotiating trust on the grid. In: 2nd WWW Workshop on Semantics in P2P and Grid Computing, New York, USA (May 2004)

    Google Scholar 

  28. Grandison, T., Sloman, M.: Survey of trust in internet applications. IEEE Communications Surveys 3(4) (2000)

    Google Scholar 

  29. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P., Violante, F.: A reputation-based approach for choosing reliable resources in peer-to-peer networks. In: Proceedings of ACM Conference on Computer and Communications Security, pp. 202–216 (2002)

    Google Scholar 

  30. Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: Travos: Trust and reputation in the context of inaccurate information sources. Autonomous Agents and Multi-Agent Systems 12(2), 183–198 (2006)

    Article  Google Scholar 

  31. Lee, S., Sherwood, R., et al.: Cooperative peer groups in nice. In: IEEE Infocom, San Francisco, USA (2003)

    Google Scholar 

  32. Gupta, M., Judge, P., et al.: A reputation system for peer-to-peer networks. In: Thirteenth ACM International Workshop on Network and Operating Systems Support for Digital Audio and Video, Monterey, California (2003)

    Google Scholar 

  33. Kamvar, S., Schlosser, M., et al.: The eigentrust algorithm for reputation management in p2p networks. In: WWW, Budapest, Hungary (2003)

    Google Scholar 

  34. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: Eigenrep: Reputation management in p2p networks. In: Proceedings of 12th International WWW Conference, pp. 640–651 (2003)

    Google Scholar 

  35. Sabater, J., Sierra, C.: Regret: A reputation model for gregarious societies. In: 4th Workshop on Deception, Fraud and Trust in Agetn Societies, Montreal, Canada (2001)

    Google Scholar 

  36. Pujol, J., Sanguesa, R., et al.: Extracting reputation in multi agent systems by means of social network topology. In: First International Joint Conference on Autonomous Agents and Multi-Agent Systems, Bologna, Italy (2002)

    Google Scholar 

  37. Catalyurek, U.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems 10(7), 673–693 (1999)

    Article  Google Scholar 

  38. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, London (1980)

    MATH  Google Scholar 

  39. Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust incentive techniques for peer-to-peer networks. ACM Press, New York (2004)

    Google Scholar 

  40. Marti, S., Garcia-Molina, H.: Limited reputation sharing in P2P systems. ACM Press, New York (2004)

    Google Scholar 

  41. Maniatis, P., Roussopoulos, M., Giuli, T., Rosenthal, D., Baker, M., Muliadi, Y.: Preserving peer replicas by rate-limited sampled voting. Technical Report arXiv:cs.CR/0303026, Stanford University (2003)

    Google Scholar 

  42. Lai, K., Feldman, M., Stoica, I., Chuang, J.: Incentives for cooperation in peer-to-peer networks. In: Workshop on Economics of Peer-toPeer Systems (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Řimnáč, M., Špánek, R. (2009). Automated Incremental Building of Weighted Semantic Web Repository. In: Abraham, A., Hassanien, AE., de Leon F. de Carvalho, A.P., Snášel, V. (eds) Foundations of Computational, IntelligenceVolume 6. Studies in Computational Intelligence, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01091-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01091-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01090-3

  • Online ISBN: 978-3-642-01091-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics