Skip to main content

Well-Graded Knowledge Structures

  • Chapter
  • First Online:
Learning Spaces

Abstract

Wellgradedness was introduced in Definition 2.2.2 as a powerful property implied by the two axioms [L1] and [L2] defining learning spaces (cf. Section 2.2). As stated in Theorem 2.2.4, any well-graded knowledge space is in fact a learning space and conversely. In this chapter, we focus on the wellgradedness property per se. We define some new concepts, derive important consequences, and describe a variety of applications to topics quite different from education. The results of this chapter will have applications elsewhere in this book. For example, they will provide the combinatoric skeleton for the learning theories developed in Chapters 9 and 12 and for some of the assessment procedures described in Chapters 13 and 14. To avoid minor technicalities, we restrict consideration to discriminative structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M. Koppen. On alternative representations for knowledge spaces. Mathematical Social Sciences, 36:127–143, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • P.C. Fishburn. Interval orders and interval graphs. John Wiley & Sons, London and New York, 1985.

    MATH  Google Scholar 

  • P. Suppes, D.H. Krantz, R.D. Luce, and A. Tversky. Foundations of Measurement, Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York and San Diego, 1989.

    Google Scholar 

  • J.-Cl. Falmagne and J.-P. Doignon. Stochastic evolution of rationality. Theory and Decision, 43:107–138, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Guttman. A basis for scaling qualitative data. American Sociological Review, 9:139–150, 1944.

    Article  MathSciNet  Google Scholar 

  • J.-P. Doignon, A. Ducamp, and J.-Cl. Falmagne. On realizable biorders and the biorder dimension of a relation. Journal of Mathematical Psychology, 28:73–109, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • P.C. Fishburn. Intransitive indiérence with unequal indiérence intervals. Journal of Mathematical Psychology, 7:144–149, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Ducamp and J.-Cl. Falmagne. Composite measurement. Journal of Mathematical Psychology, 6:359–390, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  • P.H. Edelman and R. Jamison. The theory of convex geometries. Geometrica Dedicata, 19:247–271, 1985.

    MATH  MathSciNet  Google Scholar 

  • J.-Cl. Falmagne. Stochastic token theory. Journal of Mathematical Psychology, 41(2):129–143, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • R.D. Luce. Semiorders and a theory of utility discrimination. Econometrica, 24:178–191, 1956.

    Article  MATH  MathSciNet  Google Scholar 

  • F.S. Roberts. Measurement Theory, with Applications to Decisionmaking, Utility, and the Social Sciences. Addison-Wesley, Reading, Mass., 1979.

    MATH  Google Scholar 

  • D. Eppstein, J.-Cl. Falmagne, and H.B. Uzun. On verifying and engineering the wellgradedness of a union-closed family. Journal of Mathematical Psychology, 53(1):34–39, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Scott and P. Suppes. Foundational aspects of theories of measurement. Journal of Symbolic Logic, 23:113–128, 1958.

    Article  MathSciNet  Google Scholar 

  • J.-P. Doignon and J.-Cl. Falmagne. Knowledge Spaces. Springer-Verlag, Berlin, Heidelberg, and New York, 1999.

    MATH  Google Scholar 

  • S. Ovchinnikov. Convex geometry and group choice. Mathematical Social Sciences, 5:1–16, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  • W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory. The Johns Hopkins University Press, Baltimore and London, 1992.

    MATH  Google Scholar 

  • O. Cogis. Ferrers digraphs and threshold graphs. Discrete Mathematics, 38: 33–46, 1982.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Falmagne .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Falmagne, JC., Doignon, JP. (2011). Well-Graded Knowledge Structures. In: Learning Spaces. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01039-2_4

Download citation

Publish with us

Policies and ethics