Skip to main content

Diversity Control and Multi-Parent Recombination for Evolutionary Graph Coloring Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5482))

Abstract

We present a hybrid evolutionary algorithm for the graph coloring problem (Evocol). Evocol is based on two simple-but-effective ideas. First, we use an enhanced crossover that collects the best color classes out of more than two parents; the best color classes are selected using a ranking based on both class fitness and class size. We also introduce a simple method of using distances to assure the population diversity: at each operation that inserts an individual into the population or that eliminates an individual from the population, Evocol tries to maintain the distances between the remaining individuals as large as possible. The results of Evocol match the best-known results from the literature on almost all difficult DIMACS instances (a new solution is also reported for a very large graph). Evocol obtains these performances with a success rate of at least 50%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers and Operations Research 35(3), 960–975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Costa, D., Hertz, A., Dubuis, C.: Embedding a sequential procedure within an evolutionary algorithm for coloring problems in graphs. Journal of Heuristics 1(1), 105–128 (1995)

    Article  MATH  Google Scholar 

  3. Day, W.H.E.: The complexity of computing metric distances between partitions. Mathematical Social Sciences 1, 269–287 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 745–754. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Eiben, A.E., Raué, P.E., Ruttkay, Z.: Genetic algorithms with multi-parent recombination. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 78–87. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  6. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Annals of Operations Research 63(3), 437–461 (1996)

    Article  MATH  Google Scholar 

  7. Galinier, P., Hao, J.K.: Hybrid Evolutionary Algorithms for Graph Coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-coloring problem. Discrete Applied Mathematics 156(2), 267–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glass, C.A., Pruegel-Bennett, A.: A polynomially searchable exponential neighbourhood for graph colouring. Journal of the Operational Research Society 56(3), 324–330 (2005)

    Article  MATH  Google Scholar 

  10. Gusfield, D.: Partition-distance: A problem and class of perfect graphs arising in clustering. Information Processing Letters 82(3), 159–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hertz, A., Plumettaz, A., Zufferey, N.: Variable space search for graph coloring. Discrete Applied Mathematics 156(13), 2551–2560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hertz, A., Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, D.S., Trick, M.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge. DIMACS series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  14. Malaguti, E., Monaci, M., Toth, P.: A Metaheuristic Approach for the Vertex Coloring Problem. INFORMS Journal on Computing 20(2), 302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Morgenstern, C.: Distributed coloration neighborhood search. In: [13], pp. 335–358

    Google Scholar 

  16. Sörensen, K., Sevaux, M.: MA|PM: Memetic algorithms with population management. Computers and Operations Research 33(5), 1214–1225 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Porumbel, D.C., Hao, JK., Kuntz, P. (2009). Diversity Control and Multi-Parent Recombination for Evolutionary Graph Coloring Algorithms. In: Cotta, C., Cowling, P. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2009. Lecture Notes in Computer Science, vol 5482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01009-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01009-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01008-8

  • Online ISBN: 978-3-642-01009-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics