Skip to main content

Evaluating Resistance of MCML Technology to Power Analysis Attacks Using a Simulation-Based Methodology

  • Chapter
Transactions on Computational Science IV

Abstract

This paper explores the resistance of MOS Current Mode Logic (MCML) against attacks based on the observation of the power consumption. Circuits implemented in MCML, in fact, have unique characteristics both in terms of power consumption and the dependency of the power profile from the input signal pattern. Therefore, MCML is suitable to protect cryptographic hardware from Differential Power Analysis and similar side-channel attacks.

In order to demonstrate the effectiveness of different logic styles against power analysis attacks, two full cores implementing the AES algorithm were realized and implemented with CMOS and MCML technology, and a set of different types of attack was performed using power traces derived from SPICE-level simulations. Although all keys were discovered for CMOS, MCML traces did not presents characteristic that can lead to a successful attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anis, M., Allam, M., Elmasry, M.: Impact of technology scaling on CMOS logic styles. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems II: Express Briefs, IEEE Transactions on] 49(8), 577–588 (2000)

    Google Scholar 

  2. Brier, É., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Badel, S., Guleyupoglu, E., Inac, O., Martinez, A.P., Vietti, P., Gurkaynak, F., Leblebici, Y.: A Generic Standard Cell Design Methodology for Differential Circuit Styles. In: Design Automation and Test in Europe 2008, pp. 843–848 (2008)

    Google Scholar 

  4. Bucci, M., Guglielmo, M., Luzzi, R., Trifiletti, A.: A Power Consumption Randomization Countermeasure for DPA-Resistant Cryptographic Processors. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds.) PATMOS 2004. LNCS, vol. 3254, pp. 481–490. Springer, Heidelberg (2004)

    Google Scholar 

  5. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Gonzalez, J.L., Rubio, A.: Low delta-I noise CMOS circuits based on differential logic and current limiters. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on [see also Circuits and Systems I: Regular Papers, IEEE Transactions on] 46(7), 872–876 (1999)

    Google Scholar 

  7. National Institute of Standards and Technology (NIST). Announcing the Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197 (November 2001)

    Google Scholar 

  8. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  10. Maskai, S.R., Kiaei, S., Allstot, D.J.: Synthesis techniques for CMOS folded source-coupled logic circuits. IEEE Journal of Solid-State Circuits 27(8), 1157–1167 (1992)

    Article  Google Scholar 

  11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Advances in Information Security. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  12. Regazzoni, F., Badel, S., Eisenbarth, T., Großschädl, J., Poschmann, A., Toprak, Z., Macchetti, M., Pozzi, L., Paar, C., Leblebici, Y., Ienne, P.: A Simulation-Based Methodology for Evaluating the DPA-Resistance of Cryptographic Functional Units with Application to CMOS and MCML Technologies. In: International Symposium on Systems, Architectures, Modeling and Simulation, SAMOS VII (2007)

    Google Scholar 

  13. Tiri, K., Akmal, M., Verbauwhede, I.M.: A dynamic and differential CMOS logic with signal independent power consumption to withstand differential power analysis on smart cards. In: Proceedings of the 28th European Solid-State Circuits Conference (ESSCIRC 2002), September 2002, pp. 403–406. University of Bologna, Bologna (2002)

    Google Scholar 

  14. Toprak, Z., Verma, A., Leblebici, Y., Ienne, P., Paar, C.: Design of Low-Power DPA-Resistant Cryptographic Functional Units. In: Workshop on Cryptographic Advances in Secure Hardware (2005)

    Google Scholar 

  15. Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at the logic level: Next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Regazzoni, F. et al. (2009). Evaluating Resistance of MCML Technology to Power Analysis Attacks Using a Simulation-Based Methodology. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds) Transactions on Computational Science IV. Lecture Notes in Computer Science, vol 5430. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01004-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01004-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01003-3

  • Online ISBN: 978-3-642-01004-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics