Skip to main content

Developments in Metrology in Support of Nanotechnology

  • Conference paper
Nanotechnology in Construction 3

Abstract

Nanotechnology emerges out of fundamental science through capability for accurate, repeatable and reproducible measurements on the nanoscale which allows scientists and engineers to accumulate knowledge. Understanding the measurement science is the first step towards development of new ideas. This paper describes some research initiatives which underpin the development of nanotechnology. Programs underway at the National Research Council of Canada include: development of metrological scanning-probe microscope instrumentation for dimensional calibration, materials characterization, development of artefacts designed specifically for dimensional calibration, investigation of metrology for application to soft materials and investigation of intrinsic length standards for realization of the SI metre at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koops, K.R., et al.: Calibration strategies for scanning probe metrology. Meas Sci. Technol. 18, 390–394 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Dai, G., Koenders, L., Pohlenz, F., Dziomba, T., Danzebrink, H.-U.: Accurate and traceable calibration of one-dimensional gratings. Meas Sci. Technol. 13, 1241–1249 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Misumi, I., Gonda, S., Huang, Q., Keem, T., Kurosawa, T., Fujii, A., Hisata, N., Yamagishi, T., Fujimoto, H., Enjoji, K., Aya, S., Sumitani, H.: Sub-hundred nanometre pitch measurements using an AFM with differential laser interferometers for designing usable lateral scales. Meas Sci. Technol. 16, 2080–2090 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Dixson, R., Orji, N.G., Fu, J., Cresswell, M., Allen, R., Guthrie, W.: Traceable atomic force microscope dimensional metrology at NIST. In: Proc. SPIE, vol. 6152, pp. 1–11 (2006)

    Google Scholar 

  5. Haycocks, J., Jackson, K.: Traceable calibration of transfer standards for scanning probe microscopy. Prec. Eng. 29, 168–175 (2005)

    Article  Google Scholar 

  6. Holmes, M., Hocken, R., Trumper, D.: The long-range scanning stage: a novel platform for scanned-probe microscopy. Prec. Eng. 24, 191–209 (2000)

    Article  Google Scholar 

  7. Meli, F., Thalmann, R.: Long-range AFM profiler used for accurate pitch measurements. Meas Sci. Technol. 9, 1087–1092 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Eves, B.J.: Design of a large measurement-volume metrological AFM. Meas Sci. Technol. (2009) (to be published)

    Google Scholar 

  9. Joyce, S.A., Houston, J.E.: A new force sensor incorporating force-feedback control for interfacial force microscopy. Rev. Sci. Instrum. 62, 710–715 (1991)

    Article  ADS  CAS  Google Scholar 

  10. Thomas, R.C., et al.: Probing adhesion forces at the molecular scale. J. Am. Chem. Soc. 117, 3830–3834 (1995)

    Article  CAS  Google Scholar 

  11. Tangyunyong, P., et al.: Nanometer-scale mechanics of gold-films. Phys. Rev. Lett. 71, 3319–3322 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Graham, et al.: Quantitative nanoscale mechanical properties of a phase segregated homopolymer surface. J. Mater. Res. 13, 3565–3570 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Warren, et al.: Nanomechanical properties of ZDDP films by interfacial force microscopy. A Abstr. Pap. Am. Chem. Soc. 213, 211–COLL (1997)

    Google Scholar 

  14. Pratt, J.R., Kramer, Newell, D., Smith, D.T.: Review of SI traceable force metrology for instrumented indentation and atomic force microscopy. Meas. Sci. Technol. 16, 2129–2137 (2005)

    Article  CAS  Google Scholar 

  15. Ianoul, A., et al.: Imaging nanometer domains of beta-adrenergic receptor complexes on the surface of cardiac myocytes. Nat. Chem. Biol. 1, 196–202 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Ira, Johnston, L.J.: Ceramide Promotes Restructuring of Model Raft Membranes. Langmuir 22, 11284–11289 (2006)

    Article  CAS  Google Scholar 

  17. Johnston, L.J.: Nanoscale imaging of domains in supported lipid membranes. Langmuir 23, 5886–5895 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Meli, F.: Nano 4 Final Report, 34 p. (2000), http://kcdb.bipm.org/appendixB/

  19. Breil, R., et al.: Intercomparison of scanning probe microscopes. Prec. Eng. 26, 296–305 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Decker, J.E. et al. (2009). Developments in Metrology in Support of Nanotechnology. In: Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J. (eds) Nanotechnology in Construction 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00980-8_8

Download citation

Publish with us

Policies and ethics