Combining Timed Coordination Primitives and Probabilistic Tuple Spaces

  • Mario Bravetti
  • Diego Latella
  • Michele Loreti
  • Mieke Massink
  • Gianluigi Zavattaro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5474)


In this paper we present an integration of PLinda, a probabilistic extension of Linda, and StoKlaim, a stochastic extension of KLAIM. In the resulting language, StoPKlaim, the execution time of coordination primitives is modeled by means of exponentially distributed random variables, as in StoKlaim, the choice of the primitive to be executed among conflicting ones is thus resolved by the race condition principle, and the choice of the tuple to be retrieved by a single input/read operation in case of multiple matching tuples is governed by the weight-based probabilistic access policy of PLinda. The language represents a natural development and integration of previous results of the SENSORIA Project in the area of probabilistic and time-stochastic extensions of Tuple Space based coordination languages. The formal operational semantics of StoPKlaim is presented and an example of modeling is provided.


Operational Semantic Tuple Space Dynamic Protocol Stochastic Extension Coordination Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernardo, M., Bravetti, M.: Performance Measure Sensitive Congruences for Markovian Process Algebras. Theoretical Computer Science 290(1), 117–160 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bettini, L., Bono, V., De Nicola, R., Ferrari, G., Gorla, D., Loreti, M., Moggi, E., Pugliese, R., Tuosto, E., Venneri, B.: The klaim project: Theory and practice. In: Priami, C. (ed.) GC 2003. LNCS, vol. 2874, pp. 88–150. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative Information in the Tuple Space Coordination Model. Theoret. Comput. Sci. 346(1), 28–57 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bravetti, M., Zavattaro, G.: Service Oriented Computing from a Process Algebraic Perspective. Journal of Logic and Algebraic Programming 70(1), 3–14 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A Kernel Language for Agents Interaction and Mobility. IEEE Transactions on Software Engineering 24(5), 315–329 (1998)CrossRefGoogle Scholar
  6. 6.
    De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: \(\textsc{Klaim}\) and its stochastic semantics. Technical report, Dipartimento di Sistemi e Informatica, Università di Firenze (2006),
  7. 7.
    De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: \(\textsc{MoSL}\): A Stochastic Logic for \(\textsc{StoKlaim}\). Tr, ISTI (2006),
  8. 8.
    De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: Model checking mobile stochastic logic. Theoretical Computer Science 382(1), 42–70 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    De Nicola, R., Katoen, J.-P., Latella, D., Massink, M.: Towards a logic for performance and mobility. In: Cerone, A., Wiklicky, H. (eds.) Proceedings of the Third Workshop on Quantitative Aspects of Programming Languages (QAPL 2005). Electronic Notes in Theoretical Computer Science, vol. 153, pp. 161–175. Elsevier, Amsterdam (2006)Google Scholar
  10. 10.
    De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a markovian extension of a calculus for services. In: Proc. of SOS 2008 (to appear, 2008)Google Scholar
  11. 11.
    De Nicola, R., Latella, D., Massink, M.: Formal modeling and quantitative analysis of KLAIM-based mobile systems. In: Haddad, H., Liebrock, L., Omicini, A., Wainwright, R., Palakal, M., Wilds, M., Clausen, H. (eds.) APPLIED COMPUTING 2005. Proceedings of the 20th Annual ACM Symposium on Applied Computing, pp. 428–435. Association for Computing Machinery (2005) ISBN 1-58113-964-0Google Scholar
  12. 12.
    Gelernter, D.: Generative Communication in Linda. Communications of the ACM 7(1), 80–112 (1985)zbMATHGoogle Scholar
  13. 13.
    Giacalone, A., Jou, C., Smolka, S.: Algebraic reasoning for probabilistic concurrent systems. In: Broy, M., Jones, C. (eds.) Working Conference on Programming Concepts and Methods, IFIP TC 2. North Holland, Amsterdam (1990)Google Scholar
  14. 14.
    Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation. Theoret. Comput. Sci. 274(1-2), 43–87 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: Towards model checking stochastic process algebra. In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 420–439. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Hillston, J.: A compositional approach to performance modelling. Distinguished Dissertation in Computer Science. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and Computation 88(1) (1990)Google Scholar
  18. 18.
    Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Priami, C.: Stochastic π-Calculus. The Computer Journal 38(7), 578–589 (1995)CrossRefGoogle Scholar
  21. 21.
    Stark, E., Smolka, S.: A complete axiom system for finite-state probabilistic processes. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press, Cambridge (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mario Bravetti
    • 1
  • Diego Latella
    • 2
  • Michele Loreti
    • 3
  • Mieke Massink
    • 2
  • Gianluigi Zavattaro
    • 1
  1. 1.Department of Computer ScienceUniversity of BolognaItaly
  2. 2.Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”- CNRItaly
  3. 3.Dipartimento di Sistemi e InformaticaUniversità di FirenzeItaly

Personalised recommendations