Advertisement

Process Mining: Overview and Outlook of Petri Net Discovery Algorithms

  • B. F. van Dongen
  • A. K. Alves de Medeiros
  • L. Wen
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5460)

Abstract

Within the research domain of process mining, process discovery aims at constructing a process model as an abstract representation of an event log. The goal is to build a model (e.g., a Petri net) that provides insight into the behavior captured in the log. The theory of regions can be used to transform a state-based model or a set of words into a Petri net that exactly mimics the behavior given as input. Recently several papers appeared on the application of the theory of regions for process discovery.

This paper provides an overview of different Petri net based discovery algorithms from both the area of process mining and the theory of regions. The overview encompasses five categories of algorithms, for which common assumptions and problems are indicated. Furthermore, based on the shortcomings of the algorithms in each category, a set of directions for future research in the process discovery area is discussed.

Keywords

Process Discovery Abstraction Level Discovery Algorithm Process Instance Short Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    European Project SUPER - Semantics Utilised for Process Management within and between Enterprises, http://www.ip-super.org/
  2. 2.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Rubin, V., van Dongen, B.F., Kindler, E., Günther, C.W.: Process Mining: A Two-Step Approach using Transition Systems and Regions. BPM Center Report BPM-06-30, BPMcenter.org (2006)Google Scholar
  4. 4.
    van der Aalst, W.M.P., Weijters, A.J.M.M. (eds.): Process Mining, Special Issue of Computers in Industry, vol. 53(3). Elsevier Science Publishers, Amsterdam (2004)Google Scholar
  5. 5.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  6. 6.
    de Medeiros, A.K.A., van Dongen, B.F., van der Aalst, W.M.P., Weijters, A.J.M.M.: Process Mining for Ubiquitous Mobile Systems: An Overview and a Concrete Algorithm. In: Baresi, L., Dustdar, S., Gall, H.C., Matera, M. (eds.) UMICS 2004. LNCS, vol. 3272, pp. 151–165. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Badouel, E., Bernardinello, L., Darondeau, P.: The Synthesis Problem for Elementary Net Systems is NP-complete. Theoretical Computer Science 186(1-2), 107–134 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Synthesizing Petri Nets from State-Based Models. In: Proceedings of the 1995 IEEE/ACM International Conference on Computer-Aided Design (ICCAD 1995), pp. 164–171. IEEE Computer Society, Los Alamitos (1995)Google Scholar
  12. 12.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri Nets from Finite Transition Systems. IEEE Transactions on Computers 47(8), 859–882 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Darondeau, P.: Deriving unbounded petri nets from formal languages. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533–548. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    de Medeiros, A.K.A., Pedrinaci, C., van der Aalst, W.M.P., Domingue, J., Song, M., Rozinat, A., Norton, B., Cabral, L.: An Outlook on Semantic Business Process Mining and Monitoring. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1244–1255. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    de Medeiros, A.K.A.: Genetic Process Mining. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (2006)Google Scholar
  16. 16.
    de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: an Experimental Evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction: When Will This Case Finally Be Finished. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures - Part 1 and Part 2. Acta Informatica 27(4), 315–368 (1989)CrossRefzbMATHGoogle Scholar
  19. 19.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. In: Natural Computing. Springer, Berlin (2003)Google Scholar
  20. 20.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining - Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Kindler, E., Rubin, V., Schäfer, W.: Process Mining and Petri Net Synthesis. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 105–116. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Li, J., Liu, D., Yang, B.: Process mining: Extending α-algorithm to mine duplicate tasks in process logs. In: Chang, K.C.-C., Wang, W., Chen, L., Ellis, C.A., Hsu, C.-H., Tsoi, A.C., Wang, H. (eds.) APWeb/WAIM 2007. LNCS, vol. 4537, pp. 396–407. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Lorenz, R., Juhás, R.: How to Synthesize Nets from Languages - a Survey. In: Proceedings of the Wintersimulation Conference, WSC 2007 (2007)Google Scholar
  24. 24.
    van Uden, K.: Extracting User Profiles with Process Mining at Philips Medical Systems. Master’s thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (2008)Google Scholar
  25. 25.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar
  26. 26.
    Weijters, A.J.M.M., van der Aalst, W.M.P., Alves de Medeiros, A.K.: Process Mining with HeuristicsMiner Algorithm. BETA Working Paper Series, WP 166, Eindhoven University of Technology, Eindhoven (2006)Google Scholar
  27. 27.
    Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wen, L., Wang, J., van der Aalst, W.M.P., Wang, Z., Sun, J.: A Novel Approach for Process Mining Based on Event Types. BETA Working Paper Series, WP 118, Eindhoven University of Technology, Eindhoven (2004)Google Scholar
  29. 29.
    Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 358–365. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process Discovery using Integer Linear Programming. In: Application and Theory of Petri Nets 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • B. F. van Dongen
    • 1
  • A. K. Alves de Medeiros
    • 1
  • L. Wen
    • 1
    • 2
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Tsinghua UniversityBeijingP.R. China

Personalised recommendations