Skip to main content

Part of the book series: Abel Symposia ((ABEL,volume 5))

Abstract

Classical theory for systems of the first order partial differential equations for a scalar function can be rephrased as the submanifold theory of contact manifolds (geometric first order jet spaces). In the same spirit, we will develop the geometric theory of systems of partial differential equations of second order for a scalar function as the Contact Geometry of Second Order, following E. Cartan.We will formulate the submanifold theory of second order jet spaces as the geometry of PD manifolds (R;D 1 ,D 2 ) of second order. Moreover we will establish the First Reduction Theorem for (R;D 1,D 2) admitting non-trivial Cauchy characteristic systems. By utilizing Parabolic Geometry, we will give, directly or combined with reduction theorems, several classes of systems of partial differential equations of second order, for which the model equation of each class admits the Lie algebra of infinitesimal contact transformations, which is finite dimensional and simple.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.N. Baily, Parabolic Invariant Theory and Geometry in “The Penrose Transform and Analytic Cohomology in Representation Theory” Contemp. Math. 154, Amer. Math. Soc., (1993).

    Google Scholar 

  2. W. M. Boothby, Homogeneous complex contact manifolds, Proc. Symp. Pure Math., Amer. Math. Soc. 3 (1961), 144-154.

    MathSciNet  Google Scholar 

  3. N. Bourbaki, Groupes et algèbles de Lie, Chapitre 4,5 et 6, Hermann, Paris (1968).

    Google Scholar 

  4. R. Bryant, S.S. Chern, R.B. Gardner, H. Goldschmidt, and P. Griffiths, Exterior differential systems, Springer, New York (1986)

    Google Scholar 

  5. E. Cartan, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Ec. Normale 27 (1910), 109-192.

    MathSciNet  Google Scholar 

  6. E. Cartan , Sur les systèmes en involution d'équations aux dérivées partielles du second ordre à une fonction inconnue de trois variables indépendantes, Bull. Soc. Math. France 39 (1911), 352-443.

    MathSciNet  Google Scholar 

  7. J. Hwang and K. Yamaguchi, Characterization of hermitian Symmetric Spaces by Fundamental Forms, Duke Math. J. 120 No.3 (2003), 621-634.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, New York (1972).

    MATH  Google Scholar 

  9. B. Kostant, Lie algebra cohomology and generalized Borel-Weil theorem, Ann. Math. 74 (1961), 329-387.

    Article  MathSciNet  Google Scholar 

  10. M. Kuranishi, Lectures on involutive systems of partial differential equations, Pub. Soc. Mat., São Paulo (1967).

    Google Scholar 

  11. T. Sasaki, K. Yamaguchi and M. Yoshida, On the Rigidity of Differential Systems modeled on Hermitian Symmetric Spaces and Disproofs of a Conjecture concerning Modular Interpretations of Configuration Spaces, Advanced Studies in Pure Math. 25 (1997), 318-354.

    MathSciNet  Google Scholar 

  12. Y. Se-ashi, On differential invariants of integrable finite type linear differential equations, Hokkaido Math. J. 17 (1988), 151-195.

    MATH  MathSciNet  Google Scholar 

  13. S. Sternberg Lectures on Differential Geometry, Prentice-Hall, New Jersey (1964).

    MATH  Google Scholar 

  14. N. Tanaka On generalized graded Lie algebras and geometric structures I, J. Math. Soc. Japan 19 (1967), 215-254.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Tanaka, On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ. 10 (1970), 1-82.

    MATH  MathSciNet  Google Scholar 

  16. N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. 2 (1976), 131-190.

    MathSciNet  Google Scholar 

  17. N. Tanaka, On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979), 23-84.

    MATH  MathSciNet  Google Scholar 

  18. K. Yamaguchi Contact geometry of higher order, Japanese J. of Math. 8 (1982), 109-176.

    MATH  Google Scholar 

  19. K. Yamaguchi, On involutive systems of second order of codimension 2, Proc. of Japan Acad. 58, Ser A, No.7 (1982), 302-305.

    Google Scholar 

  20. K. Yamaguchi, Geometrization of Jet bundles, Hokkaido Math. J. 12 (1983), 27-40.

    MATH  MathSciNet  Google Scholar 

  21. K. Yamaguchi, Typical classes in involutive systems of second order, Japanese J. Math. 11 (1985), 265-291.

    MATH  Google Scholar 

  22. K. Yamaguchi, Differential systems associated with simple graded Lie algebras, Adv. Studies in Pure Math. 22 (1993), 413-494.

    Google Scholar 

  23. K. Yamaguchi, G2-Geometry of Overdetermined Systems of Second Order, Trends in Math. (Analysis and Geometry in Several Complex Variables) (1999), Birkhäuser, Boston 289-314.

    Google Scholar 

  24. K. Yamaguchi, Geometry of Linear Differential Systems Towards Contact Geometry of Second Order, IMA Volumes in Mathematics and its Applications 144 (Symmetries and Overdetermined Systems of Partial Differential Equations) (2007), 151-203.

    Article  Google Scholar 

  25. K. Yamaguchi and T. Yatsui, Geometry of Higher Order Differential Equations of Finite Type associated with Symmetric Spaces, Advanced Studies in Pure Mathematics 37 (2002), 397-458.

    MathSciNet  Google Scholar 

  26. K. Yamaguchi and T. Yatsui, Parabolic Geometries associated with Differential Equations of Finite Type, Progress in Mathematics 252 (From Geometry to Quantum Mechanics: In Honor of Hideki Omori) (2007), 161-209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keizo Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamaguchi, K. (2009). Contact Geometry of Second Order I. In: Kruglikov, B., Lychagin, V., Straume, E. (eds) Differential Equations - Geometry, Symmetries and Integrability. Abel Symposia, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00873-3_16

Download citation

Publish with us

Policies and ethics