Advertisement

The Effective Surface Roughness Scaling of the Gelation Surface Pattern Formation

  • T. Mizoue
  • M. Tokita
  • H. Honjo
  • H. J. Barraza
  • H. KatsuragiEmail author
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 136)

Abstract

The surface pattern formation on a gelation surface is analyzed using an effective surface roughness. The spontaneous surface deformation on DiMethylAcrylAmide (DMAA) gelation surface is controlled by temperature, initiator concentration, and ambient oxygen. The effective surface roughness is defined using 2-dimensional photo data to characterize the surface deformation. Parameter dependence of the effective surface roughness is systematically investigated. We find that decrease of ambient oxygen, increase of initiator concentration, and high temperature tend to suppress the surface deformation in almost similar manner. That trend allows us to collapse all the data to a unified master curve. As a result, we finally obtain an empirical scaling form of the effective surface roughness. This scaling is useful to control the degree of surface patterning. However, the actual dynamics of this pattern formation is not still uncovered.

Keywords

Surface pattern formation Gel Radical polymerization Effective surface roughness 

References

  1. 1.
    Cross MC, Hohenberg PC (1993) Rev Mod Phys 65:851CrossRefGoogle Scholar
  2. 2.
    Tanaka T, Sun ST, Hirokawa Y, Katayama S, Kucera J, Hirose Y, Amiya T (1987) Nature 325:796CrossRefGoogle Scholar
  3. 3.
    Matsuo ES, Tanaka T (1992) Nature 358:482CrossRefGoogle Scholar
  4. 4.
    Tanaka H, Tomita H, Takasu A, Hayashi T, Nishi T (1992) Phys Rev Lett 68:2794CrossRefGoogle Scholar
  5. 5.
    Tokita M, Miyamoto M, Komai T (2000) J Chem Phys 113:1647CrossRefGoogle Scholar
  6. 6.
    Sekimoto K, Kawasaki K (1987) J Phys Sco Jpn 56:2997CrossRefGoogle Scholar
  7. 7.
    Onuki A (1988) J Phys Soc Jpn 57:703CrossRefGoogle Scholar
  8. 8.
    Hwa T, Karder M (1988) Phys Rev Lett 61:106CrossRefGoogle Scholar
  9. 9.
    Narita T, Tokita M (2006) Langmuir 22:349CrossRefGoogle Scholar
  10. 10.
    Katsuragi H (2006) Europhys Lett 73:793CrossRefGoogle Scholar
  11. 11.
    Onuki A (2002) Phase transition dynamics, Cambridge University PressCrossRefGoogle Scholar
  12. 12.
    Bowden N, Brittain S, Evans AG, Huchinson JW, Whitesides GM (1998) Nature 393:146CrossRefGoogle Scholar
  13. 13.
    Takahashi M, Maeda T, Uemura K, Yao J, Tokuda Y, Yoko T, Kaji H, Marcelli A, Innocenzi P (2007) Adv Mater 19:4343CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • T. Mizoue
    • 1
  • M. Tokita
    • 2
  • H. Honjo
    • 1
  • H. J. Barraza
    • 3
  • H. Katsuragi
    • 1
    Email author
  1. 1.Department of Applied Science for Electronics and MaterialsKyushu UniversityKasugaJapan
  2. 2.Department of PhysicsKyushu UniversityHakozakiJapan
  3. 3.Unilever R&DBebingtonUnited Kingdom

Personalised recommendations