Time-Dependent Flow Properties of Transient Hydrogels with Temporal Network Junctions

  • Isamu KanedaEmail author
  • Tsuyoshi Koga
  • Fumihiko Tanaka
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 136)


The nonlinear rheological behavior under startup shear flows in aqueous solutions of telechelic hydrophobically ethoxylated urethane carrying branched alkyl end-chains, 2-decyl-tetradecyl, (referred to as C24-HEUR) was studied by strain-controlled rheomery. Unusual stress upturn (known as strain hardening), followed by the stress overshoot, was observed for 3 wt% aqueous solution above a critical shear rate. The phenomenon is explained by our recent transient network theory in terms of nonlinear chain stretching occurring during the stress build-up. Upon addition of glycerol, the relaxation time was shortened, while the equilibrium modulus increased with the concentration of glycerol. The stress upturn disappeared above a certain value of the glycerol concentration, strongly suggesting that glycerol affects the dynamics of the transient network through the interaction with the micellar junctions.


HEUR Strain hardening Glycerol Transient network Stress growth 



This work is partially supported by a Grant-in-Aid for Scientific Research (B)19350057 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Jenkins RD (1990) Ph.D. dissertation, Lehigh UniversityGoogle Scholar
  2. 2.
    Lundberg DJ, Glass JE, and Eley RR (1991) Rheol. Acta 7, 1255Google Scholar
  3. 3.
    Annable T, Buscall R, Ettelaie R, and Whittlestone D (1993) J. Rheol.,37, 695Google Scholar
  4. 4.
    Annable T, Buscall R, Ettelaie R, Shepherd P, and Whittlestone D (1994) Langmuir, 10, 1060CrossRefGoogle Scholar
  5. 5.
    Tanaka F and Edward SF (1991) Macromolecules, 25, 147Google Scholar
  6. 6.
    Tanaka F and Edwards SF (1992) J. Non-Newtonean Fluid Mech., 43, 247Google Scholar
  7. 7.
    Tanaka F and Edwards SF (1992) J. Non-Newtonean Fluid Mech., 43, 273Google Scholar
  8. 8.
    Tanaka F and Edwards SF (1992) J. Non-Newtonean Fluid Mech., 43, 289Google Scholar
  9. 9.
    Tanaka F and Koga T (2006) Macromolecules, 39, 5913CrossRefGoogle Scholar
  10. 10.
    Patent WO 02051939Google Scholar
  11. 11.
    Yoshida K, Nakamura A, Nakajima Y, Fukuhara T, Inoue H, and Kaneda I (2007) IFSCC magazine, 10, 2Google Scholar
  12. 12.
    Barmar M, Barikani M, and Kaffashi (2005) Colloids and Surfaces A, 253, 77CrossRefGoogle Scholar
  13. 13.
    Kaffashi B, Barmar M, and Eyvani J (2005) Colloids and Surfaces A, 254, 125CrossRefGoogle Scholar
  14. 14.
    Tripathi A, Tam KC, and McKinley GH (2006) Macromolecules, 39, 1981CrossRefGoogle Scholar
  15. 15.
    Onogi S, Masuda T, and Matsumoto T (1970) Trans. Soc. Rheol., 14, 275Google Scholar
  16. 16.
    Matsumoto T, Tamamoto O, Onogi S (1980) J. Rheol., 24 (4), 379CrossRefGoogle Scholar
  17. 17.
    Penfold J, Staples E, Tucker I, and Cummins P (1997) J. Colloid Inter. Sci., 185, 424CrossRefGoogle Scholar
  18. 18.
    Alexandridis P and Yang L (2000) Macromolecules, 33, 5587Google Scholar
  19. 19.
    Koga T, Tanaka F, and Kaneda I (2009) Progr Colloid Polym Sci., 136, Chapter 6Google Scholar
  20. 20.
    Winnik FM, Ringsdorf H, Venzmer J (1990) Macromolecules 23, 2415CrossRefGoogle Scholar
  21. 21.
    Winnik FM, Ottaviani M F, Bossmann, Garcia-Garibay M, and Turro NJ (1992) Macromolecules 25, 6007CrossRefGoogle Scholar
  22. 22.
    Kaneda I and Vincent B (2004) J. Colloid Interface Sci., 274, 49Google Scholar
  23. 23.
    Tanaka F, Koga T, and Winnik FM (2008) Physical Review Letters, 101, 028302CrossRefGoogle Scholar
  24. 24.
    Nishinari K (2004) J. Texture Studies, 35, 113Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Food ScienceRakuno Gakuen UniversityHokkaidoJapan
  2. 2.Graduate school of TechnologyKyoto UniversityKyotoJapan

Personalised recommendations