Advertisement

Helix-Coil Transition and Association Behavior of Water-Soluble Polypeptides Having Hydrophobic Alkyl Side Chains

  • Katsuhiro InomataEmail author
  • Tomokazu Takai
  • Noriyoshi Ohno
  • Yoshiaki Yamaji
  • Erina Yamada
  • Hideki Sugimoto
  • Eiji Nakanishi
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 136)

Abstract

Water soluble polypeptide, poly[N 5-(2-hydroxyethyl) L-glutamine] (PHEG), was hydrophobiocally modified partially along the main chain by long alkyl groups -(CH2) n–1CH3 (Cn) as side chains. Association and viscoelastic behavior of solutions of these self-assembling polymers (PHEG-g-Cn, n = 12, 16 and 18) were investigated by means of steady-flow viscosity and linear dynamic viscoelasticity measurements. In the mixed solvent of water/ethylene glycol (EG), the main chain of PHEG-g-Cn changed its conformation from flexible random coil to rodlike α-helix with the increase in EG content of the solvent. When the solvent was pure water, existence of the associative alkyl chains induced a drastic increase in shear flow viscosity (η) than PHEG homopolymer, probably because of formation of self-assembled large aggregates via intermolecular association. When EG was used as solvent, η and the elastic storage modulus (G′) of the solution revealed a unique concentration dependence, i.e., η and G′ of PHEG-g-C18 solution at 20 wt% were smaller than those at 15 wt%. These viscoelastic behaviors may be described by the α-helical rodlike conformation of PHEG main chain, which is suitable to form an ordered anisotropic phase like lyotropic liquid crystal, with destruction of a physically crosslinked network structure.

Keywords

Polypeptides Association Viscoelastisity Associative polymers Helix-coil transition 

Notes

Acknowledgement

We would like to acknowledge the financial support by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 15550105 and No. 18550193).

References

  1. 1.
    Annable T, Buscall R, Ettelaie R, Whittlestone D (1993) J Rheol 37:695CrossRefGoogle Scholar
  2. 2.
    Aubry T, Moan M (1994) J Rheol 38:1681CrossRefGoogle Scholar
  3. 3.
    Klucker R, Schosseler F (1997) Macromolecules 30:4927CrossRefGoogle Scholar
  4. 4.
    Itakura M, Inomata K, Nose T (2001) Polymer 42:9261CrossRefGoogle Scholar
  5. 5.
    Noda T, Hashidzume A, Morishima Y (2001) Macromolecules 34:1308CrossRefGoogle Scholar
  6. 6.
    Rogovina LZ, Vasil’ev VG, Churochkina NA, Pryakhina TI (2001) Macromol Symp 171:225CrossRefGoogle Scholar
  7. 7.
    Borzacchiello A, Ambrosio L (2001) J Biomater Sci Polymer Edn 12:307CrossRefGoogle Scholar
  8. 8.
    Aubry T, Bossard F, Moan M (2002) Polymer 43:3375CrossRefGoogle Scholar
  9. 9.
    Kujawa P, Audibert-Hayet A, Selb J, Candau F (2004) J Polym Sci Part B Polym Phys 42:1640CrossRefGoogle Scholar
  10. 10.
    Hashidzume A, Kawaguchi A, Tagawa A, Hyoda K, Sato T (2006) Macromolecules 39:1135CrossRefGoogle Scholar
  11. 11.
    Kawata T, Hashidzume A, Sato T (2007) Macromolecules 40:1174CrossRefGoogle Scholar
  12. 12.
    Inomata K, Kasuya M, Sugimoto H, Nakanishi E (2005) Polymer 46:10035CrossRefGoogle Scholar
  13. 13.
    Inomata K, Nakanishi D, Banno A, Nakanishi E, Abe Y, Kurihara R, Fujimoto K, Nose T (2003) Polymer 44:5303CrossRefGoogle Scholar
  14. 14.
    Lotan N, Yaron A, Berger A (1966) Biopolymers 4:365CrossRefGoogle Scholar
  15. 15.
    Miyake M, Akita S, Teramoto A, Norisuye T, Fujita H (1974) Biopolymers 13:1173CrossRefGoogle Scholar
  16. 16.
    Doty P, Bradbury JH, Holtzer AM (1956) J Am Chem Soc 78:947CrossRefGoogle Scholar
  17. 17.
    Tsierkezos NG, Molinou IE (1998) J Chem Eng Data 43:989CrossRefGoogle Scholar
  18. 18.
    Inomata K, Doi R, Yamada E, Sugimoto H, Nakanishi E (2007) Colloid Polym Sci 285:1129CrossRefGoogle Scholar
  19. 19.
    Kiss G, Porter RS (1980) J Polym Sci Polym Phys Ed 18:361CrossRefGoogle Scholar
  20. 20.
    Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Oxford University Press, New YorkGoogle Scholar
  21. 21.
    Oertel R, Kulicke WM (1991) Rheol Acta 30:140CrossRefGoogle Scholar
  22. 22.
    Tanaka F, Edwards SF (1992) J Non-Newtonian Fluid Mech 43:247CrossRefGoogle Scholar
  23. 23.
    Holmes LA, Kusamizu S, Osaki K, Ferry JD (1971) J Polym Sci Part A-2 9:2009CrossRefGoogle Scholar
  24. 24.
    Spadon P, Verdini AS, Del Pra A (1978) Biopolymers 17:2029CrossRefGoogle Scholar
  25. 25.
    Flory PJ, Ronca G (1979) Mol Cryst Liq Cryst 54:289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Katsuhiro Inomata
    • 1
    Email author
  • Tomokazu Takai
  • Noriyoshi Ohno
  • Yoshiaki Yamaji
  • Erina Yamada
  • Hideki Sugimoto
  • Eiji Nakanishi
  1. 1.Department of Materials Science and EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations