Gel Formation of Recombinant Fibrinogen Lacking αC Termini

  • Kenji KuboaEmail author
  • Yuka Masuda
  • Yoshiharu Toyama
  • Nobukazu Nameki
  • Nobuo Okumura
  • Masanori Ochiai
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 136)


In order to examine the role of αC domains, especially the terminal region of it, of fibrinogen Aα chain in the fibrin gel formation, we prepared a recombinant fibrinogen, Aα570 fibrinogen. Aα570 fibrinogen is the fibrinogen that is truncated at Aα570 and lacks 40 amino acids at the terminus of the αC domain. We examined the thrombin-catalyzed polymerization by transmission spectroscopy and confocal laser scanning microscopy (CLSM). We found that Aα570 fibrinogen exhibited a significantly delayed aggregation showing the importance of the terminal region of the αC domain in the polymerization process. Contrary to the fact that the addition of glucose to the mixture of fibrinogen and thrombin results in a substantial delay of the lateral aggregation of protofibrils for the native fibrinogen, delaying effect due to the addition of glucose disappeared thoroughly in the case of Aα570 fibrinogen. Turbidity measurements dependent upon the wavelength in the time course of gelation showed that mass per unit fiber length of Aα570 fibrinogen decreased significantly compared to the native fibrinogen, and the lateral aggregation of protofibrils was hindered significantly. Those results are consistent with the CLSM measurements that the bundles of protofibrils of Aα570 fibrinogen are thinner and denser with more branching than those of the native one. It was confirmed that C-terminal region of the αC domain plays an important role in the lateral aggregation and glucose interferes the interacting process between the αC domains.


Fibrinogen Truncation αC domain Gelation Saccharides 



Authors, K. Kubota and N. Okumura, thank Prof. S. T. Lord for providing the plasmid vector that encodes the fibrinogen Aa chain. This work was partly supported by the Grant for Joint Research Program of the Institute of Low Temperature Science, Hokkaido Univ. and by the Ministry of Education, Japan.


  1. 1.
    Weisel JW (2005) Adv Protein Chem 70:247CrossRefGoogle Scholar
  2. 2.
    Kita R, Takahashi A, Kaibara M, Kubota K (2002) Biomacromolecules 3:1013CrossRefGoogle Scholar
  3. 3.
    Sugo T, Sakata Y, Matsuda M (2002) Current Protein and Peptide Sci 3:239CrossRefGoogle Scholar
  4. 4.
    Veklich YI, Gorkun OV, Medved LV, Nieuwenhuizent W, Weisel JW (1993) J Biol Chem 268:13577Google Scholar
  5. 5.
    Rudchenko S, Trakht I, Sobel JH (1996) J Biol Chem 271:2523CrossRefGoogle Scholar
  6. 6.
    Lau HK (1993) Blood 81:3277Google Scholar
  7. 7.
    Tsurupa G, Tsonev L, Medved L (2002) Biochemistry 41:6449CrossRefGoogle Scholar
  8. 8.
    Pechik I, Madrazo J, Mosesson MW, Hernadez I, Gilliland GL, Medved L (2004) Proc Natl Acad Sci USA 101:2718CrossRefGoogle Scholar
  9. 9.
    Burton RA, Tsurupa G, Medved L, Tjandra N (2006) Biochemistry 45:2257CrossRefGoogle Scholar
  10. 10.
    Masuda Y, Toyama Y, Kogure H, Kubota K, Ochiai M (2004) Trans MRS-J 29:3331Google Scholar
  11. 11.
    Langer BG, Weisel JW, Dinauer PA, Nagaswami C, Bell WR (1988) J Biol Chem 263:15056Google Scholar
  12. 12.
    Lord ST, Strickland E, Jayjock E (1996) Biochemistry 35:2342CrossRefGoogle Scholar
  13. 13.
    Rooney MM, Mullin JL, Lord ST (1998) Biochemistry 37:13704CrossRefGoogle Scholar
  14. 14.
    Gorkun OV, Veklich YI, Weisel JW, Lord ST (1997) Blood 89:4407Google Scholar
  15. 15.
    Koopman J, Haverkate F, Grimbergen J, Egbring R, Lord ST (1992) Blood 80:1972Google Scholar
  16. 16.
    Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, de Bosch NB, Carvajal Z, Ojeda A, Arocha-Pinango CL, Matsuda M (1991) J Biol Chem 266:11575Google Scholar
  17. 17.
    Kubota K, Kogure H, Masuda Y, Toyama Y, Kita R, Takahashi A, Kaibara M (2004) Colloid Surf 38:103CrossRefGoogle Scholar
  18. 18.
    Carr Jr ME, Gabriel DA (1980) Macromolecules 13:1473CrossRefGoogle Scholar
  19. 19.
    Carr Jr ME, Gabriel DA, McDonagh J (1986) Biochem J 239:513Google Scholar
  20. 20.
    Kogure H, Kitazawa M, Toyama Y, Kubota K, Ochiai M (2003) Trans MRS-J 28:949Google Scholar
  21. 21.
    Walker JB, Nesheim ME (1999) J Biol Chem 274:5201CrossRefGoogle Scholar
  22. 22.
    Gorkun OV, Henschen-Edman AH, Ping LF, Lord ST (1998) Biochemistry 37:15434CrossRefGoogle Scholar
  23. 23.
    Hogan KA, Gorkun OV, Lounes KC, Coates AI, Weisel JW, Hantgan RR, Lord ST (2000) J Biol Chem 275:17778CrossRefGoogle Scholar
  24. 24.
    Gorkun OV, Veklich YI, Medved L, Henschen AH, Weisel JW (1994) Biochemistry 33:6986CrossRefGoogle Scholar
  25. 25.
    Collet JP, Moen JL, Veklich YI, Gorkun OV, Lord ST, Montalescot G, Weisel JW (2005) Blood 106:3824CrossRefGoogle Scholar
  26. 26.
    Sugo T, Nakamikawa C, Takano H, Mimuro J, Yamaguchi S, Mosesson MW, Meh DA, DiOrio JP,Takahashi N, Takahashi H, Nagai K, Matsuda M (1999) Blood 94:3806Google Scholar
  27. 27.
    Chtcheglova LA, Vogel M, Gruber H, Dietler G, Haeverli A (2006) Biopolymers 83:69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kenji Kuboa
    • 1
    Email author
  • Yuka Masuda
    • 1
  • Yoshiharu Toyama
    • 1
  • Nobukazu Nameki
    • 1
  • Nobuo Okumura
    • 2
  • Masanori Ochiai
    • 3
  1. 1.Department of Chemistry and Chemical BiologyGraduate School of Engineering, Gunma UniversityGunmaJapan
  2. 2.Department of Bimedical Laboratory SciencesSchool of Medicine, Shinsyu UniversityNaganoJapan
  3. 3.Institute of Low Temperature ScienceHokkaido UniversityHokkaidoJapan

Personalised recommendations