Development of a Novel Hydrogel to Prevent Bacterial Infectious Diseases

  • Norihiro KatoEmail author
  • Azumi Kobayashi
  • Hiroshi Motohashi
  • Yu Ozonoe
  • Tomohiro Morohoshi
  • Tsukasa Ikeda
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 136)


Temperature-induced phase separation (TIPS) technique was applied to create cyclodextrin (CD) immobilized 2-hydroxypropyl cellulose (HPC) gel sheets. A heterogeneous polymer network could be fixed when the reaction temperature was stepwise increased above a lower critical solution temperature (LCST) of the HPC polymer at approximately 40°C during the cross-linking reaction. Dynamics of polymer network formation was characterized by measuring the viscosity change of the pre-gel solution with or without the TIPS process. A temperature increase is responsible for drastic increase of the viscosity of which change was translated as the acceleration of the cross-linking reaction rates. The immobilized α-CD or hydroxypropyl-β-CD (HP-β-CD) onto the TIPS-generated polymer network effectively decreased the production of red pigment prodigiosin that was one of the second metabolites through the cell-population-density dependent quorum sensing (QS) system in Serratia marcescens AS-1. Since virulence expression in some opportunistic pathogens was regulated by diffusible acylhomoserine lactone (AHL) mediated QS system, trapping AHLs onto the host matrices could make the CD-immobilized gels interrupt the hierarchical QS system from outside of cells. The AHL-mediated prodigiosin production could be drastically decreased to approximately 10% using the CD-AHL inclusion complex formation when the TIPS process was applied to HPC/α-CD gel synthesis with optimized condition of the phase separation.


Cell-to-cell communication Quorum sensing Cyclodextrin Gene expression control N-Acylhomoserine lactone 



This research was partially supported by the Japan Society for the Promotion Science, a Grant-in-Aid for Scientific Research (C), 19560775, 19510081, 2008.


  1. 1.
    Ikariyama Y, Suzuki S, Aizawa M (1982) Anal Chem 54:1126CrossRefGoogle Scholar
  2. 2.
    Ikariyama Y, Furuki M, Aizawa M (1985) Anal Chem 57:496CrossRefGoogle Scholar
  3. 3.
    Kokufuta E (1992) Prog Polym Sci 17:647CrossRefGoogle Scholar
  4. 4.
    Momji N, Hoffman AS (1987) Appl Biochem Biotech 14:107CrossRefGoogle Scholar
  5. 5.
    Chang L, Hoffman AS (1991) J Controlled Rel 15:141CrossRefGoogle Scholar
  6. 6.
    Miyata T, Uragami T, Nakamae K (2002) Adv Drug Del Rev 54:79CrossRefGoogle Scholar
  7. 7.
    Kokufuta E, Zhang YQ, Tanaka T (1991) Nature 351:302CrossRefGoogle Scholar
  8. 8.
    Kato N, Matsumoto H, Nozawa T, Morohoshi T, Ikeda T (2005) Trans Mater Res Soc Jpn 30:827Google Scholar
  9. 9.
    Kato N, Morohoshi T, Matsumoto H, Tanaka T, Ikeda T (2005) Trans Mater Res Soc Jpn 30:815Google Scholar
  10. 10.
    Kato N, Morohoshi T, Nozawa T, Matsumoto H, Ikeda T (2006) J Incl Phenom Macro Chem 56:55CrossRefGoogle Scholar
  11. 11.
    Kato N, Tanaka T, Nakagawa S, Morohoshi T, Hiratani K, Ikeda T (2007) J Incl Phenom Macro Chem 57:419CrossRefGoogle Scholar
  12. 12.
    Kato N, Ozonoe Y, Umebayashi E, Morohoshi T, Ikeda T (2008) Adv Sci Tech 57:94CrossRefGoogle Scholar
  13. 13.
    Greenberg EP (1997) ASM News 63:371Google Scholar
  14. 14.
    Fuqua C, Parsek MR, Greenberg EP (2001) Annu Rev Genet 35:439CrossRefGoogle Scholar
  15. 15.
    Kleerebezem M, Quadri LEN, Kulpers OP, de Vos WM (1997) Mol Microbiol 24:895CrossRefGoogle Scholar
  16. 16.
    Stover CK et al (2000) Nature 406:959CrossRefGoogle Scholar
  17. 17.
    Harris AKP, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GPC (2004) Microbiol 150:3547CrossRefGoogle Scholar
  18. 18.
    Slater H, Crow M, Everson L, Salmond GPC (2003) Mol Microbiol 47:303CrossRefGoogle Scholar
  19. 19.
    Kato N, Gehrke SH (2004) Reflexive Polymers and Hydrogels. CRC Press, USA, pp 189–215Google Scholar
  20. 20.
    Huang X, Unno H, Akehata T, Hirasa O (1987) J Chem Eng Jpn 20:123CrossRefGoogle Scholar
  21. 21.
    Serizawa T, Wakita K, Akashi M (2002) Macromolecules 35:10CrossRefGoogle Scholar
  22. 22.
    Kato N, Takahashi F (1997) Bull Chem Soc Jpn 70:1289CrossRefGoogle Scholar
  23. 23.
    Suzuki M, Hirasa O (1993) Adv Polym Sci 110:241CrossRefGoogle Scholar
  24. 24.
    Kato N, Sakai Y, Shibata S (2003) Macromolecules 36:961CrossRefGoogle Scholar
  25. 25.
    Kato N, Gehrke SH (2004) Colloid Surf B Biointerfaces 38:191CrossRefGoogle Scholar
  26. 26.
    Kabra BG, Gehrke SH (1991) Polym Commun 32:322Google Scholar
  27. 27.
    Kabra BG, Gehrke SH, Spontak RJ (1998) Macromolecules 31:2166CrossRefGoogle Scholar
  28. 28.
    Kabra BG, Gehrke SH (1994) ACS Symp Ser 573:76CrossRefGoogle Scholar
  29. 29.
    Chhabra SR, Sread S, Bainton NJ, Salmond GPC, Stewart GSAB, Williams P, Bycroft BW (1993) J Antibiot 46:441CrossRefGoogle Scholar
  30. 30.
    Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GPC, Bycroft BW, Lazdunski A, Stewart GSAB, Williams P (1995) Proc Natl Acad Sci USA 92:9427CrossRefGoogle Scholar
  31. 31.
    Schaefer AL, Hanzelka BL, Eberhand A, Greenberg EP (1996) J Bacteriol 178:2897Google Scholar
  32. 32.
    Ravin L, Christensen AB, Molin S, Givskov M, Gram L (2001) J Microbiol Methods 44:239CrossRefGoogle Scholar
  33. 33.
    Kato N, Nakagawa S, Ozonoe Y, Tanaka T, Morohoshi T, Ikeda T (2007) Proc Fourth Asian Cyclodextrin Conference pp 28–33Google Scholar
  34. 34.
    Hu Z, Lu X, Gao J, Wang C (2000) Adv Mater 12:1173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Norihiro Kato
    • 1
    Email author
  • Azumi Kobayashi
    • 1
  • Hiroshi Motohashi
    • 1
  • Yu Ozonoe
    • 1
  • Tomohiro Morohoshi
    • 2
  • Tsukasa Ikeda
    • 2
  1. 1.Department of Advanced Interdisciplinary SciencesGraduate School of Engineering, Utsunomiya UniversityUtsunomiyaJapan
  2. 2.Department of Material and Environmental ChemistryGraduate School of Engineering, Utsunomiya UniversityUtsunomiyaJapan

Personalised recommendations