Influence of Heating Temperature on Cooking Curve of Rice

  • Kunio NakamuraEmail author
  • Atsuko Akutsu
  • Ayumi Otake
  • Hatsue Moritaka
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 136)


The swelling behavior of a rice grain in water and an aqueous NaCl and acetic acid solution was investigated as a function of temperature. We observed that the rice grain in water shows an abrupt change in shape and size at 61 °C. The transition temperature Tv became higher in an order: sodium chloride aqueous solution > water > acetic acid aqueous solution. In order to clarify Tv, we also investigated kinetics on cooking of rice grains by the rheological measurement. The time development of compliance of rice grains in compression (cooking curve) from 5 to 1440 min was measured in the range of cooking temperatures from 61 to 80°C. We found that Tv is the onset temperature to complete the cooking of rice. The cooking curve at the cooking temperature neighborhood Tv was approximated by the first order reaction with the two different rate constants. The faster and slower reactions were explained as indicating the plasticizing effect of water on rice grains, and mainly the gelatinization of the starch in rice grains, respectively.


Rice Cooking curve Rheology Kinetics Cooking temperature Phase transition 


  1. 1.
    Matsuo M, Takaya T, Miwa A, Moritaka H, Nishinari K (2002) Nihon Soshaku Gakukaishi 12:11Google Scholar
  2. 2.
    Moritaka H, Hasegawa M, Imai Y (2005) J Cookery Sci Jpn 38:30Google Scholar
  3. 3.
    Okadome H, Toyoshima H, Sudo M, Ando I, Numaguchi K, Ohtsubo K (1998) Nippon Shokuhin Kagaku Kogaku Kaishi 45:398CrossRefGoogle Scholar
  4. 4.
    Kasai M, Lewis A, Marica F, Ayabe S, Hatae K, Fyfe CA (2005) Food Research Int 38:403CrossRefGoogle Scholar
  5. 5.
    Horigane AK, Toyoshima H, Hemmi H, Engelaar WMHG, Okubo A, Nagata T (1999) J Food Science 64:1CrossRefGoogle Scholar
  6. 6.
    Horigane AK, Engelaar WMHG, Maruyama S, Yoshida M, Okubo A, Nagata T (2001) J Cereal Science 33:105CrossRefGoogle Scholar
  7. 7.
    Horigane AK, Takahashi H, Maruyama S, Ohtsubo K, Yoshida M (2006) J Cereal Science 44:307CrossRefGoogle Scholar
  8. 8.
    Lelievre J (1976) Polymer 17:854CrossRefGoogle Scholar
  9. 9.
    Donovan JW (1979) Biopolymer 18:263CrossRefGoogle Scholar
  10. 10.
    Biliaderis CG, Page CM, Maurice TJ, Juliano BO (1986) J Agr Food Chem 34:6CrossRefGoogle Scholar
  11. 11.
    Slade L, Levine H (1988) Carbohydr Polym 8:183CrossRefGoogle Scholar
  12. 12.
    Moritaka H, Nakamura K (2005) J Soc Rheology Jpn 33:75CrossRefGoogle Scholar
  13. 13.
    Shpolyanskaya AL (1952) Colloid Journal (USSR) 14:137Google Scholar
  14. 14.
    Kohyama K, Nishinari K (1991) J Agr Food chem 39:1406CrossRefGoogle Scholar
  15. 15.
    Oosten BJ (1982) Starch/Stärke, 34:233CrossRefGoogle Scholar
  16. 16.
    Tokita M (1989) Food Hydrocolloids 3:263CrossRefGoogle Scholar
  17. 17.
    Suzuki U, Kubota K, Omichi M, Hosaka H (1976) J Food Sci 41:1180CrossRefGoogle Scholar
  18. 18.
    Fujita H, Kishimoto A (1958) J Polym Sci A-2 28:547Google Scholar
  19. 19.
    Nakamura K, Nakagawa T (1975) J Polym Sci Polym Phys Ed, 13:2299CrossRefGoogle Scholar
  20. 20.
    Honma N, Sato E, Shibuya U, Ishihara K (1983) J Home Economics Japan 34:698Google Scholar
  21. 21.
    Kohyama K, Yamaguchi M, Kobori C, Nakayama Y, Hayakawa F, Sasaki T (2005) Biosci Biotechnol Biochem 69:1669CrossRefGoogle Scholar
  22. 22.
    Ohishia K, Kasai M, Shimada A, Hatae K (2007) Food Research International 40:224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kunio Nakamura
    • 1
    Email author
  • Atsuko Akutsu
  • Ayumi Otake
  • Hatsue Moritaka
  1. 1.Graduate School of Dairy ScienceRakuno Gakuen UniversityEbetsuJapan

Personalised recommendations