Effect of Residual Swelling Solvent on Nanopore Formation in Replication of Swollen Hydrogel Network

  • Ken-ichi KurumadaEmail author
  • Atsushi Suzuki
  • Emiko Otsuka
  • Susumu Baba
  • Youhei Seto
  • Keisuke Morita
  • Takanori Nakamura
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 136)


Hydrogel network of poly N, N′ – isopropyl acrylamide (PNIPAM) was replicated into a silica matrix in the coexistence of PNIPAM hydrogel and solidifying preform sol of silica. During the drying process, the nanoscopic network structure was gradually immobilized in the solidifying silica matrix. The condition for the drying was shown to be highly influential on the total volume of the nanopore and pore size distribution. When the drying was carried out near the saturated vapor pressure of water in order to retard the evaporation of the contained water, the total volume and cross-sectional diameter of the nanopore as the replica of PNIPAM hydrogel were significantly larger than those in the case of normal air-drying open to air. This result indicates that the residual water enveloped PNIPAM polymer chains as a “water robe”, and as a result of that, the size and total volume of the nanopore significantly enhanced. The comparison of the formed volume of the nanopore to the water content in the preform revealed that a nonnegligible proportion over the half of the water evaporated during the retarded drying without contributing to the formation of the nanopore. Thus, only the water that remained in the hybrid of PNIPAM and silica at the stage of the entire solidification of the silica matrix could play the role of enhancing the nanopores.


Hydrogel Nanoscopic network Replication Residual water Pore size distribution Water robe 



The authors gratefully acknowledge the continuous financial support and many useful suggestions by Hitachi Chemical Co. Ltd.


  1. 1.
    Tan C, Lu R, Xue P, Bao C, Zhao Y (2008) Mater Chem Phys in pressGoogle Scholar
  2. 2.
    Lopez-Ureta LC, Orozco-Guareño E, Cruz-Barba LE, Gonzalez-Alvarez A, Bautista-Rico F (2008) J Polym Sci, Part A: Polym Chem 46:2667Google Scholar
  3. 3.
    Fu XJ, Wang NX, Zhang SZ, Wang H, Yang YJ (2008) Wuji Cailiao Xuebao (Journal of Inorganic Materials) 23:393Google Scholar
  4. 4.
    Ford J, Yang S (2007) Chem. Mater. 19:5570Google Scholar
  5. 5.
    Nelson K, Deng Y (2007) Macromol Mater Eng 292:1158CrossRefGoogle Scholar
  6. 6.
    Zhao J, Li Y, Cheng G (2007) Chin Sci Bull 52:1796CrossRefGoogle Scholar
  7. 7.
    Shen Z, Duan H, Frey H (2007) Adv Mater 19:349CrossRefGoogle Scholar
  8. 8.
    Sahiner N (2006) Colloid Polym Sci 285:283CrossRefGoogle Scholar
  9. 9.
    Bao C, Lu R, Xue P, Jin M, Tan C, Liu G, Zhao Y (2006) Journal of Nanoscience and Nanotechnology 6:807CrossRefGoogle Scholar
  10. 10.
    Zhao J, Li Y, Kuang Q, Cheng G (2005) Colloid Polym Sci 284:175CrossRefGoogle Scholar
  11. 11.
    Firestone MA, Dietz ML, Seifen S, Trasobares S, Miller DJ, Zaluzec NJ (2005) Small 1:754CrossRefGoogle Scholar
  12. 12.
    Marty JD, Mauzac M (2005) Adv Polym Sci 172:1CrossRefGoogle Scholar
  13. 13.
    Aburto J, Mendez-Orozco A, Le Borgne S (2004) Chem Eng Process 43:1587CrossRefGoogle Scholar
  14. 14.
    Bao C, Lu R, Jin M, Xue P, Tan C, Zhao Y, Liu G (2004) Journal of Nanoscience and Nanotechnology 4:1045CrossRefGoogle Scholar
  15. 15.
    Jung JH, Lee SS, Shinkai S, Iwaura R, Shimizu T (2004) Bull Korean Chem Soc 25:63CrossRefGoogle Scholar
  16. 16.
    Wang H, Holmberg BA, Yan Y (2003) J Am Chem Soc 125:9928CrossRefGoogle Scholar
  17. 17.
    Shen X, Tong H, Jiang T, Zhu Z, Wan P, Hu J (2007) Compos Sci Technol 67:2238CrossRefGoogle Scholar
  18. 18.
    Matsusaki M, Yoshida H, Akashi M (2007) Biomaterials 28:2729CrossRefGoogle Scholar
  19. 19.
    Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomaterials 27:4661CrossRefGoogle Scholar
  20. 20.
    Sugawara A, Yamane S, Akiyoshi K (2006) Macromol Rapid Commun 27:441CrossRefGoogle Scholar
  21. 21.
    Hawkins DM, Stevenson D, Reddy SM (2005) Anal Chim Acta 542:61CrossRefGoogle Scholar
  22. 22.
    Alexandre E, Cinqualbre J, Jaeck D, Richert L, Isel F, Lutz PJ (2004) Macromol Symp 210:475CrossRefGoogle Scholar
  23. 23.
    Bellamkonda R, Ranieri JP, Bouche N, Aebischer P (1995) J Biomed Mater Res 29:663CrossRefGoogle Scholar
  24. 24.
    Zhao QC, Chen WM, Zhu QR (2003) Mater Lett 57:3606CrossRefGoogle Scholar
  25. 25.
    Sisk CN, Gill SK. Hope-Weeks LJ (2006) Chem Lett 35:814CrossRefGoogle Scholar
  26. 26.
    Kurumada K, Nakamura T, Suzuki A, Umeda N, Kishimoto N, Hiro, M (2007) J Non-Cryst Solids 353:4839CrossRefGoogle Scholar
  27. 27.
    Barrett EP, Joyner LJ, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ken-ichi Kurumada
    • 1
    Email author
  • Atsushi Suzuki
  • Emiko Otsuka
  • Susumu Baba
  • Youhei Seto
  • Keisuke Morita
  • Takanori Nakamura
  1. 1.School of Environment and Information SciencesYokohama National UniversityYokohamaJapan

Personalised recommendations