Competitive Hydrogen Bonds and Cononsolvency of Poly(N-isopropylacrylamide)s in Mixed Solvents of Water/Methanol

  • Fumihiko TanakaEmail author
  • Tsuyoshi Koga
  • Françoise M. Winnik
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 136)


Collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating in aqueous solutions is theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. Phase diagrams with very flat LCST phase separation line for aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions are theoretically derived on the basis of sequential hydrogen bond formation between polymer chains and water molecules (cooperative hydration), and compared with experimental spinodal curves. The two-phase region systematically changes its shape with the cooperativity parameter σ, and the spinodals turned out to be almost independent of the polymer molecular weight for strongly cooperative hydration (small σ) as observed in PNIPAM solutions. Reentrant coil-globule-coil transition in mixed solvent of water and methanol is also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mol fraction of methanol due to the competition is calculated and compared with the experimental data.


Consolvency Competitive hydrogen bond Reentrant coil-globule-coil transition 


82.70.Gg 64.60.-i 64.70.-p 64.75.+g 



We wish to acknowledge the partial support of this work by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science under grant number 19350057.


  1. 1.
    Schild HG (1992) Prog. Polym. Sci. 17: 163Google Scholar
  2. 2.
    Afroze F, Nies E, Berghmans, H (2000) J. Mol. Structure 554: 55Google Scholar
  3. 3.
    de Azevedo RG, Rebelo LPN, Ramos AM, Szydlowski J, de Sousa HC, Klein J (2001) Fluid Phase Eq. 185: 189CrossRefGoogle Scholar
  4. 4.
    Rebelo LPN, Visak ZP, de Sousa HC, Szydlowski J, de Azevedo RG, Ramos AM, Najdanovic-Visak V, da Ponte MN, Klein J (2002) Macromolecules 35: 1887CrossRefGoogle Scholar
  5. 5.
    Milewska A, Szydlowski J, Rebelo LPN (2003) J. Polym. Sci., Polym. Phys. Ed. 41: 1219CrossRefGoogle Scholar
  6. 6.
    Fujishige S, Kubota K, Ando I (1989) J. Phys. Chem. 93: 3311CrossRefGoogle Scholar
  7. 7.
    Okada Y, Tanaka F (2005) Macromolecules 38: 4465CrossRefGoogle Scholar
  8. 8.
    Kujawa P, Aseyev V, Tenhu H, Winnik FM (2006) Macromolecules 39: 7686CrossRefGoogle Scholar
  9. 9.
    Balu C, Delsanti M, Guenoun P (2007) Langmuir 23: 2404CrossRefGoogle Scholar
  10. 10.
    Zhang G, Wu C (2001) Macromolecules 123: 1376Google Scholar
  11. 11.
    Hirotsu S (1987) J. Phys. Soc. Jpn 56: 233CrossRefGoogle Scholar
  12. 12.
    Hirotsu S (1988) J. Chem. Phys. 88: 427CrossRefGoogle Scholar
  13. 13.
    Schild HG, Muthukumar M, Tirrel DA (1991) Macromolecules 24: 948CrossRefGoogle Scholar
  14. 14.
    Winnik FM, Ottaviani MF, Bossmann SH, Garcia-Garibay M, Turro NJ (1992) Macromolecules 25: 6007CrossRefGoogle Scholar
  15. 15.
    Winnik FM, Ottaviani MF, Bossmann SH, Pan W, Carcia-Gaibay M, Turro NJ (1993) Macromolecules 26: 4577CrossRefGoogle Scholar
  16. 16.
    Tanaka F, Koga T, Winnik FM (2008) Phys. Rev. Lett. 101: 028302[1–4]Google Scholar
  17. 17.
    Ye X, Lu Y, Ding Y, Liu S, Zhang G, Wu C (2007) Macromolecules 40: 4750CrossRefGoogle Scholar
  18. 18.
    Tanaka F (2003) Macromolecules 36: 5392CrossRefGoogle Scholar
  19. 19.
    Zimm BH, Bragg JK (1959) J. Chem. Phys. 31: 526CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fumihiko Tanaka
    • 1
    Email author
  • Tsuyoshi Koga
    • 1
  • Françoise M. Winnik
    • 2
  1. 1.Department of Polymer Chemistry Graduate School of EngineeringKyoto UniversityKyotoJapan
  2. 2.Department of Chemistry and Faculty of PharmacyUniversity of MontréalMontrealCanada

Personalised recommendations