Universally Anonymous IBE Based on the Quadratic Residuosity Assumption

  • Giuseppe Ateniese
  • Paolo Gasti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5473)


We introduce the first universally anonymous, thus key-private, IBE whose security is based on the standard quadratic residuosity assumption. Our scheme is a variant of Cocks IBE (which is not anonymous) and is efficient and highly parallelizable.


Random Oracle Random Oracle Model Cryptology ePrint Archive Jacobi Symbol Hybrid Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., MaloneLee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID Tags via Insubvertible Encryption. In: CCS 2005: Proceedings of the 12th ACM conference on Computer and communications security, pp. 92–101. ACM, New York (2005)Google Scholar
  3. 3.
    Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-Resistant Storage via KeywordSearchable Encryption. In: Cryptology ePrint Archive, Report 2005/417 (2005),
  4. 4.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key Encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.: Generic Constructions of Identity-Based and Certificateless KEMs. In: Cryptology ePrint Archive, Report 2005/058 (2005),
  6. 6.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM Journal on Computing 32(3), 586–615 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Boneh, D., Gentry, C., Hamburg, M.: Space-Efficient Identity Based Encryption Without Pairings. In: FOCS 2007: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, pp. 647–657. IEEE Computer Society, Washington (2007)Google Scholar
  10. 10.
    Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (Without Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on Computing 33(1), 167–226 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Di Crescenzo, G., Saraswat, V.: Public Key Encryption with Searchable Keywords Based on Jacobi Symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Damgård, I.B.: On the Randomness of Legendre and Jacobi Sequences. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 163–172. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  16. 16.
    Halevi, S.: A Sufficient Condition for Key-Privacy. In: Cryptology ePrint Archive, Report 2005/05 (2005),
  17. 17.
    Hayashi, R., Tanaka, K.: Universally Anonymizable Public-Key Encryption. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 293–312. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    NIST. The Case for Elliptic Curve Cryptography,
  19. 19.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems Based on Pairing. In: Symposium on Cryptography and Information Security (SCIS 2000), Okinawa, Japan (2000)Google Scholar
  20. 20.
    Scott, M.: Authenticated ID-based Key Exchange and Remote Log-in With Insecure Token and PIN Number. In: Cryptology ePrint Archive, Report 2002/164 (2002),
  21. 21.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  22. 22.
    Shamus Software. The MIRACL library,
  23. 23.
    Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption (Version 2.1) (manuscript) (December 20, 2001),
  24. 24.
    Spiegel, M.R.: Theory and Problems of Probability and Statistics. McGraw-Hill, New York (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Giuseppe Ateniese
    • 1
  • Paolo Gasti
    • 2
  1. 1.The Johns Hopkins UniversityUSA
  2. 2.University of GenovaItaly

Personalised recommendations