Advertisement

Constant-Rounds, Almost-Linear Bit-Decomposition of Secret Shared Values

  • Tomas Toft
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5473)

Abstract

Bit-decomposition of secret shared values – securely computing sharings of the binary representation – is an important primitive in multi-party computation. The problem of performing this task in a constant number of rounds has only recently been solved.

This work presents a novel approach at constant-rounds bit-decomposition. The basic idea provides a solution matching the big-\(\mathcal{O}\)-bound of the original while decreasing the hidden constants. More importantly, further solutions improve asymptotic complexity with only a small increase in constants, reducing it from \(\mathcal O(\ell{\rm log}(\ell))\) to \(\mathcal O({\ell}{\rm log}^*(\ell))\) and even lower. Like previous solutions, the present one is unconditionally secure against both active and adaptive adversaries.

Keywords

Secret Sharing Constant-rounds Multi-party Computation Bit-decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACS02]
    Algesheimer, J., Camenisch, J.L., Shoup, V.: Efficient computation modulo a shared secret with application to the generation of shared safe-prime products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. [BGW88]
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New York (1988)Google Scholar
  3. [DFK+06]
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. [DN03]
    Damgård, I.B., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. [NO07]
    Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. [Sha79]
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [ST06]
    Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier encrypted values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. [Tof07]
    Toft, T.: Primitives and Applications for Multi-party Computation. PhD thesis, University of Aarhus (2007), http://www.daimi.au.dk/~ttoft/publications/dissertation.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tomas Toft
    • 1
    • 2
  1. 1.CWI AmsterdamThe Netherlands
  2. 2.TU EindhovenThe Netherlands

Personalised recommendations