Advertisement

Recursive Double-Size Modular Multiplications without Extra Cost for Their Quotients

  • Masayuki Yoshino
  • Katsuyuki Okeya
  • Camille Vuillaume
Conference paper
  • 841 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5473)

Abstract

A technique for computing the quotient (\(\lfloor ab/n \rfloor\)) of Euclidean divisions from the difference of two remainders \((ab \pmod{n} - ab \pmod{n+1})\) was proposed by Fischer and Seifert. The technique allows a 2ℓ-bit modular multiplication to work on most ℓ-bit modular multipliers. However, the cost of the quotient computation rises sharply when computing modular multiplications larger than 2ℓ bits with a recursive approach. This paper addresses the computation cost and improves on previous 2ℓ-bit modular multiplication algorithms to return not only the remainder but also the quotient, resulting in an higher performance in the recursive approach, which becomes twice faster in the quadrupling case and four times faster in the octupling case. In addition to Euclidean multiplication, this paper proposes a new 2ℓ-bit Montgomery multiplication algorithm to return both of the remainder and the quotient.

Keywords

modular multiplication efficient implementation RSA arithmetic unit low-end device crypto-coprocessors double-size technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CJP03]
    Chevallier-Mames, B., Joye, M., Paillierinst, P.: Faster double-size modular multiplication from euclidean multipliers. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 214–227. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. [EMV]
    EMV. EMV Issuer and Application Security Guidelines, Version 2.1 (2007), http://www.emvco.com/specifications.asp?show=4
  3. [FS03]
    Fischer, W., Seifert, J.-P.: Increasing the bitlength of a crypto-coprocessor. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 71–81. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. [Mon85]
    Montgomery, P.L.: Modular Multiplication without Trial Division. Mathematics of Computation 44(170), 519–521 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [MOV96]
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  6. [Nis07a]
    National Institute of Standards and Technology. NIST Special Publication 800-57 Recommendation for Key Management Part 1: General (Revised) (2007), http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
  7. [Nis07b]
    National Institute of Standards and Technology. NIST Special Publication 800-78-1, Cryptographic Algorithms and Key Sizes for Personal Identity Verification (2007) http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
  8. [NM96]
    Naccache, D., M’Raïhi, D.: Arithmetic Co-processors for Public-key Cryptography: The State of the Art. In: CARDIS, pp. 18–20 (1996)Google Scholar
  9. [Pai99]
    Paillier, P.: Low-cost double-size modular exponentiation or how to stretch your cryptoprocessor. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, p. 223. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. [RSA78]
    Rivest, R.L., Shamir, A., Adelman, L.M.: A Method for Obtaining Digital Signatures and Public-key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [YOV07a]
    Yoshino, M., Okeya, K., Vuillaume, C.: Unbridle the bit-length of a crypto-coprocessor with montgomery multiplication. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 188–202. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. [YOV07b]
    Yoshino, M., Okeya, K., Vuillaume, C.: Double-size bipartite modular multiplication. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 230–244. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. [YOV08]
    Yoshino, M., Okeya, K., Vuillaume, C.: A Black Hen Lays White Eggs: Bipartite Multiplier Out of Montgomery One for On-Line RSA Verification. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 74–88. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Masayuki Yoshino
    • 1
  • Katsuyuki Okeya
    • 1
  • Camille Vuillaume
    • 1
  1. 1.Systems Development LaboratoryHitachi, Ltd.YokohamaJapan

Personalised recommendations