Square, a New Multivariate Encryption Scheme

  • Crystal Clough
  • John Baena
  • Jintai Ding
  • Bo-Yin Yang
  • Ming-shing Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5473)


We propose and analyze a multivariate encryption scheme that uses odd characteristic and an embedding in its construction. This system has a very simple core map F(X) = X 2, allowing for efficient decryption. We also discuss ways to make this decryption faster with specific parameter choices. We give heuristic arguments along with experimental data to show that this scheme resists all known attacks.


Signature Scheme Parameter Choice Minimal Rank Algebraic Attack Vector Space Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between XL and gröbner basis algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 338–353. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Baena, J., Clough, C., Ding, J.: Square-Vinegar signature scheme. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Buss, J.F., Frandsen, G.S., Shallit, J.O.: The Computational Complexity of Some Problems of Linear Algebra. Journal of Computer and System Sciences 58(3), 572–596 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Diene, A., Ding, J., Gower, J.E., Hodges, T.J., Yin, Z.: Dimension of the linearization equations of the Matsumoto-Imai cryptosystems. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 242–251. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Ding, J., Dubois, V., Yang, B.-Y., Chen, O.C.-H., Cheng, C.-M.: Could SFLASH be repaired? In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 691–701. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Ding, J., Schmidt, D., Werner, F.: Algebraic attack on HFE revisited. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 215–227. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    eBACS: ECRYPT benchmarking of cryptographic systems,
  9. 9.
    Faugére, J.-C.: A new efficient algorithm for computing Gröbner bases (F 4). J. Pure Appl. Algebra 139(1-3), 61–88 (1999); effective Methods in algebraic geometry (Saint-Malo) (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 75–83. ACM, New York (2002)CrossRefGoogle Scholar
  11. 11.
    Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE) cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S., et al.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H Freeman, San Francisco (1979)zbMATHGoogle Scholar
  13. 13.
    Jiang, X., Ding, J., Hu, L.: Public Key Analysis-Kipnis-Shamir Attack on HFE Revisited. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 399–411. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    The MAGMA computational algebra system home page,
  16. 16.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  17. 17.
    Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of EUROCRYPT 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Patarin, J.: Hidden fields equations (HFE) and Isomorphisms of Polynomials (IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  19. 19.
    Patarin, J., Courtois, N.T., Goubin, L.: FLASH, a fast multivariate signature algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Patarin, J., Goubin, L.: Trapdoor one-way permutations and multivariate polynominals. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 356–368. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Shanks, D.: Five numbertheoretic algorithms. In: Thomas, R.S.D., Williams, H.C. (eds.) Proceedings of the Second Manitoba Conference on Numerical Mathematics, pp. 51–70 (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Crystal Clough
    • 1
  • John Baena
    • 1
    • 2
  • Jintai Ding
    • 1
    • 4
  • Bo-Yin Yang
    • 3
  • Ming-shing Chen
    • 3
  1. 1.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Universidad Nacional de ColombiaMedellínColombia
  3. 3.Institute of Information ScienceAcademia SinicaTaipeiTaiwan
  4. 4.College of SciencesSouth China University of TechnologyGuangzhouChina

Personalised recommendations