Advertisement

Divisible On-Line/Off-Line Signatures

  • Chong-zhi Gao
  • Baodian Wei
  • Dongqing Xie
  • Chunming Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5473)

Abstract

On-line/Off-line signatures are used in a particular scenario where the signer must respond quickly once the message to be signed is presented. The idea is to split the signing procedure into two phases: the off-line and on-line phases. The signer can do some pre-computations in off-line phase before he sees the message to be signed.

In most of these schemes, when signing a message m, a partial signature of m is computed in the off-line phase. We call this part of signature the off-line signature token of message m. In some special applications, the off-line signature tokens might be exposed in the off-line phase. For example, some signers might want to transmit off-line signature tokens in the off-line phase in order to save the on-line transmission bandwidth. Another example is in the case of on-line/off-line threshold signature schemes, where off-line signature tokens are unavoidably exposed to all the users in the off-line phase.

This paper discusses this exposure problem and introduces a new notion: divisible on-line/off-line signatures, in which exposure of off-line signature tokens in off-line phase is allowed. An efficient construction of this type of signatures is also proposed. Furthermore, we show an important application of divisible on-line/off-line signatures in the area of on-line/off-line threshold signatures.

Keywords

Signature Schemes Divisible On-line/Off-line Signatures On-line/Off-line Threshold Signatures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-Inversion problems and the security of Chaum’s blind signature scheme. Report 2001/002, Cryptology ePrint Archive (May 2002)Google Scholar
  2. 2.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bresson, E., Catalano, D., Gennaro, R.: Improved on-line/Off-line threshold signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 217–232. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R.: Off-line/On-line signatures: Theoretical aspects and experimental results. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 101–120. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic on-line/off-line signatures without key exposure. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 18–30. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Crutchfield, C., Molnar, D., Turner, D., Wagner, D.: Generic on-line/Off-line threshold signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 58–74. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Desmedt, Y.: Threshold cryptography. European Transactions on Telecommunications 5(4), 449–457 (1994)CrossRefGoogle Scholar
  8. 8.
    Desmedt, Y.: Some recent research aspects of threshold cryptography. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 158–173. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory IT-31(4), 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  12. 12.
    Gao, C., Wei, B., Xie, D., Tang, C.: Divisible on-line/off-line signatures. Cryptology ePrint Archive, Report 2008/447 (2008), http://eprint.iacr.org/
  13. 13.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of RSA functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988); special issue on cryptographyMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kurosawa, K., Schmidt-Samoa, K.: New online/Offline signature schemes without random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 330–346. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  17. 17.
    National Institute of Standards and Technology (NIST). The Digital Signature Standard, 186. Federal Information Processing Standards Publication (FIPS PUB) (May 1994)Google Scholar
  18. 18.
    Schmidt-Samoa, K., Takagi, T.: Paillier’s cryptosystem modulo p\(^{\mbox{2}}\)q and its applications to trapdoor commitment schemes. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 296–313. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1991)CrossRefzbMATHGoogle Scholar
  20. 20.
    Shamir, A., Tauman, Y.: Improved online/Offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Xu, S., Mu, Y., Susilo, W.: Online/Offline signatures and multisignatures for AODV and DSR routing security. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 99–110. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Yu, P., Tate, S.R.: An online/offline signature scheme based on the strong rsa assumption. In: AINA Workshops (1), pp. 601–606 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chong-zhi Gao
    • 1
  • Baodian Wei
    • 2
  • Dongqing Xie
    • 1
  • Chunming Tang
    • 3
  1. 1.School of Computer ScienceGuangzhou UniversityGuangzhouChina
  2. 2.Department of Electronics and Communication EngineeringSun Yat-sen UniversityGuangzhouChina
  3. 3.Institute of Information SecurityGuangzhou UniversityGuangzhouChina

Personalised recommendations