Advertisement

Efficient Concurrent npoly(logn)-Simulatable Argument of Knowledge

  • Guifang Huang
  • Dongdai Lin
  • Yanshuo Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5451)

Abstract

In [16], Pass generalized the definition of zero knowledge proof and defined n O(σ(n))-simulatable proof which can be simulated by a simulator in n O(σ(n)) time. Assuming the existence of one-way permutation secure against sub-exponential circuits and 2-round perfect hiding commitment scheme, an efficient 4-round perfect n poly(logn)-simulatable argument of knowledge was presented there.

In this paper, we construct an efficient concurrent n poly(logn)-simulatable argument of knowledge under more general assumption. The new scheme is 5-round and is based on the existence of one-way permutation secure against sub-exponential circuits. However, for the scheme in [16], if using ordinary Σ-protocol for the corresponding statement as sub-protocol, instead of Σ-protocol with honest verifier perfect zero knowledge, the resulting protocol is not necessarily closed under concurrent composition.

Keywords

straight-line npoly(logn)-simulatable argument of knowledge Σ-protocol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brassard, G., Chaum, D., Crépeau, C.: Minimum Disclosure Proofs of Knowledge. J. of Computer and System Sciences 37(2), 156–189 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barak, B., Pass, R.: On the Possibility of One-Message Weak Zero-Knowledge. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 121–132. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-Box Concurrent Zero- Knowledge Requires (almost) Logarithm Many Rounds. SIAM J. on Computing 32(1), 1–47 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
  6. 6.
    Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In: 30th Annual ACM Symposium on Theory of Computing, pp. 409–418. ACM Press, New York (1998)Google Scholar
  7. 7.
    Feige, U., Shamir, A.: Witness Indinstinguishable and Witness Hiding Protocols. In: 22th Annual ACM Symposium on Theory of Computing, pp. 416–426. ACM Press, New York (1990)Google Scholar
  8. 8.
    Secure Multi-Party Computation, http://www.wisdom.weizmann.ac.il
  9. 9.
    Goldreich, O.: Foundation of Cryptography-Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Goldreich, O., Krawczyk, H.: On the Composition of Zero-Knowledge Proof Systems. SIAM J. on Computing. 25(1), 169–192 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof System. SIAM J. on Computing. 18(1), 186–208 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goldreich, O., Micali, S., Widerson, A.: Proofs that Yields Nothing But Their validity or ALL Languages in \(\mathcal{NP}\) Have Zero Knowledge Proof Systems. J. of ACM. 38(3), 691–729 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Goldreich, O., Oren, Y.: Definitions and Properties of Zero-Knowledge Proof Systems. J. of Cryptology. 7(1), 1–32 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lindell, Y.: General Composition and Universal Composability in Secure Multi- Party Computation. In: 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 394–403. IEEE Computer Society, Washington (2003)Google Scholar
  15. 15.
    Lindell, Y.: Lower Bounds for Concurrent Self Composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Pass, R.: Simulation in Quasi-Polynomial Time and Its Application to Protocol Composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Guifang Huang
    • 1
    • 3
  • Dongdai Lin
    • 1
    • 3
  • Yanshuo Zhang
    • 2
  1. 1.The State Key Laboratory of Information Security, Institute of SoftwareChinese Academy of SciencesBeijingP.R. China
  2. 2.Beijing Institute of Electronic Science and TechnologyBeijingP.R. China
  3. 3.Graduate University of Chinese Academy of SciencesP.R. China

Personalised recommendations