Advertisement

New Constructions for Reusable, Non-erasure and Universally Composable Commitments

  • Huafei Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5451)

Abstract

This paper proposes a novel construction of reusable and non-erasure commitment schemes in the common reference string model. We show that our implementation is secure in the universally composable paradigm assuming that the decisional Diffie-Hellman problem over a squared composite modulus of the form N =pq is hard. Our methodology relies on state-of-the-art double trap-door public-key encryption protocols so that a simulator in charge of a common reference string can extract messages of cipher-text rather than the equivocability of underlying cryptographic systems. As a result, our method differs from those presented in [2] and [7]. The double trap-door mechanism is of great benefit to an ideal-world simulator since no modifications will be charged to unopened commitments in case that the participants who generated these commitments are corrupted, and thus enables us to implement efficient simulators in the ideal-world.

Keywords

Non-erasure reusability simulator universally composable commitment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Canetti, R.: A new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–145 (2001)Google Scholar
  4. 4.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable commitments and zero-knowledge proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 515–535. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-Interactive and Non-Malleable Commitment. In: STOC 1998, pp. 141–150 (1998)Google Scholar
  9. 9.
    Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening Zero-Knowledge Protocols Using Signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 177–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Naor, M.: Bit Commitment Using Pseudorandomness. J. Cryptology 4(2), 151–158 (1991)CrossRefzbMATHGoogle Scholar
  11. 11.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Huafei Zhu
    • 1
  1. 1.C&S Department, I2RSingapore

Personalised recommendations