Random Knotting: Theorems, Simulations and Applications

  • De Witt SumnersEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 1973)


This article describes some of the theoretical and simulation results on random entanglement, and give a few scientific applications. I will prove that, on the simple cubic lattice Z3, the probability that a randomly chosen n-edge polygon in Z3 is knotted goes to one exponentially rapidly with length n (Murphy’s Law of entanglement); in other words, all but exponentially few polygons of length n in Z3 are knotted. Measures of entanglement complexity of random knots and random arcs are discussed as well as application of random knotting to viral DNA packing.


Viral Capsid Alexander Polynomial Seifert Surface Lattice Polygon Ball Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ax1]
    [Ax1] Alexander, J.W.: An Example of a Simply Connected Surface Bounding a Region which is not Simply Connected. Proceedings of the National Academy of Sciences USA, 10, 8–10 (1924).ADSCrossRefGoogle Scholar
  2. [Ax2]
    [Ax2] Alexander, J.W.: On the Subdivision of 3-Space by a Polyhedron. Proceedings of the National Academy of Sciences USA, 10, 6–8 (1924).ADSCrossRefGoogle Scholar
  3. [Sv]
    [Sv] Silver, D.S.: Knot Theory's Odd Origins. American Scientist, 94, 58–66 (2006).CrossRefGoogle Scholar
  4. [Mof]
    [Mof] Moffatt, H.K.: Knots and Fluid Dynamics. In Ideal Knots, Series on Knots and Everything, eds. Stasiak, A., Katritch, V., Kauffman, L.H. (World Scientific, Singapore), Vol. 19, 223–233 (1999).Google Scholar
  5. [Ric1]
    [Ric1] Ricca, R.L.: New Developments in Topological Fluid Mechanics: From Kelvin's Vortex Knots to Magnetic Knots. In Ideal Knots, Series on Knots and Everything, eds. Stasiak, A., Katritch, V., Kauffman, L.H. (World Scientific, Singapore), Vol. 19, 255–273 (1999).Google Scholar
  6. [Ric2]
    [Ric2] Ricca, R.L.: Tropicity and Complexity Measures for Vortex Tangles, Lecture Notes in Physics v. 571. Springer, Berlin Heidelberg New York, 366–372 (2001).Google Scholar
  7. [LZC]
    [LZC] Liu, Z, Zechiedrich, E.L., Chan, H.S.: Inferring global topology from local juxta-position geometry: interlinking polymer rings and ramifications for topoisomerase action. Biophys. J., 90, 2344–2355 (2006).ADSCrossRefGoogle Scholar
  8. [BZ]
    [BZ] Buck, G, Zechiedrich, E.L.: DNA disentangling by type-2 topoisomerases. J. Mol Biol. Jul 23; 340(5): 933–9 (2004).CrossRefGoogle Scholar
  9. [FW]
    [FW] Frisch, H.L., Wasserman, E.: Chemical Topology. J. Am. Chem. Soc. 83, 3789–3795 (1961).CrossRefGoogle Scholar
  10. [Was]
    [Was] Wasserman, E.: Chemical Topology. Scientific American 207, 94–102 (1962)ADSGoogle Scholar
  11. [Del]
    [Del] Delbruck, M: in Mathematical Problems in the Biological Sciences, Proceedings of Symposia in Applied Mathematics 14, 327– (1962).Google Scholar
  12. [VLF]
    [VLF] Vologodskii, A.V., Lukashin, A.V., Frank-Kemenetkii, M.D., Anshelevich, V.V.: The Knot Problem in Statistical Mechanics of Polymer Chains. Sov. Phys.-JETP 39, 1059– (1974).ADSGoogle Scholar
  13. [CM]
    [CM] des Cloizeaux, J., Mehta, M.L.: J. de Physique 40, 665– (1979).CrossRefGoogle Scholar
  14. [MW]
    [MW] Michels, J.P.J., Wiegel, F.W.: Probability of Knots in a Polymer Ring. Phys. Lett. 90A, 381–384 (1984).ADSGoogle Scholar
  15. [SW]
    [SW] Sumners, D.W., Whittington, S.G.: Knots in Self-Avoiding Walks. J. Phys. A: Math. Gen. 21, 1689–1694 (1988).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  16. [Kes]
    [Kes] Kesten, H.: On the Number of Self-Avoiding Walks. J. Math. Phys. 4, 960–969 (1963).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  17. [Pip]
    [Pip] Pippenger, N.: Knots in Random Walks. Discrete Appl. Math. 25, 273–278 (1989).zbMATHMathSciNetCrossRefGoogle Scholar
  18. [Adm]
    [Adm] Adams, C.C.: The Knot Book. W.H. Freeman and Co., New York (1991).Google Scholar
  19. [RSW]
    [RSW] van Rensburg, E.J.J., Sumners, D.W., Wasserman, E., Whittington, S.G.: Entanglement Complexity of Self-Avoiding Walks. J. Phys. A.: Math. Gen. 25, 6557–6566 (1992).ADSzbMATHCrossRefGoogle Scholar
  20. [RBHS]
    [RBHS] Lacher R.C., Bryant J.L., Howard L., Sumners D.W. Linking phenomena in the amorphous phase of semicrystalline polymers. Macromolecules 19, 2639–2643 (1986).ADSCrossRefGoogle Scholar
  21. [DNS]
    [DNS] Diao, Y.,Nardo, J.C., Sun Y.: Global Knotting in Equilateral Polygons. J. of Knot Theory and Its Ramifications 10, 597–607 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  22. [Do2]
    [Do2] Diao, Y.: The Knotting of Equilateral Polygons in R 3. J. of Knot Theory and Its Ramifications 4, 189–196 (1995).zbMATHMathSciNetCrossRefGoogle Scholar
  23. [DPS]
    [DPS] Diao, Y., Pippenger, N., Sumners, D.W.: On Random Knots. J. of Knot Theory and Its Ramifications 3, 419–424 (1994).zbMATHMathSciNetCrossRefGoogle Scholar
  24. [Do1]
    [Do1] Diao, Y.: Minimal Knotted Polygons on the Simple Cubic Lattice. J. of Knot Theory and Its Ramifications 2, 413–425 (1993).zbMATHMathSciNetCrossRefGoogle Scholar
  25. [RW]
    [RW] van Rensburg, E.J.J., Whittington, S.G.: The Knot Probability in Lattice Polygons. J. Phys. A.: Math. Gen. 23, 3573–3590 (1990).ADSzbMATHCrossRefGoogle Scholar
  26. [SSW]
    [SSW] Soteros C., Sumners D.W., Whittington S.G.: Entanglement complexity of graphs in Z 3, Math. Proc Camb. Phil. Soc. 111, 75–91 (1992).zbMATHMathSciNetCrossRefGoogle Scholar
  27. [Jun]
    [Jun] Jungreis, D.: Gaussian Random Polygons are Globally Knotted. J. of Knot Theory and Its Ramifications 4, 455–464 (1994).MathSciNetCrossRefGoogle Scholar
  28. [Ken]
    [Ken] Kendall:The knotting of brownian motion in 3-space. J. Lon. Math. Soc. 19, 378–(1979).MathSciNetCrossRefGoogle Scholar
  29. [DT1]
    [DT1] Deguchi, T., Tsurasaki, K.: Universality of Random Knotting. Phys. Rev. E. 55, 6245–6248 (1997).ADSCrossRefGoogle Scholar
  30. [Nak]
    [Nak] Nakanishi, Y.: A Note on Unknotting Number. Math. Sem. Notes Kobe Univ. 9, 99–108 (1981).zbMATHMathSciNetGoogle Scholar
  31. [Ful]
    [Ful] Fuller, B.: The Writhing Number of a Space Curve. Proc. Nat. Acad. Sci. USA 68, 815–819 (1971).CADSzbMATHMathSciNetCrossRefGoogle Scholar
  32. [LS]
    [LS] Lacher, R.C., Sumners D.W.: Data structures and algorithms for computation of topological invariants of entanglements: link, twist and writhe. In Computer Simulation of Polymers, Prentice-Hall, Roe, R.J., ed. Englewood Cliffs, NJ, 365–373 (1991).Google Scholar
  33. [Cim]
    [Cim] Cimasoni, D.: Computing the Writhe of a Knot. J. Knot Theory and Its Ramifications 10, 387–395 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  34. [LaS]
    [LaS] Laing, C, Sumners D.W.: Computing the Writhe on Lattices. J. Phys A, Math. Gen. 39, 3535–3543 (2006).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  35. [ROS]
    [ROS] van Rensburg, E.J.J., Orlandini, E., Sumners, D.W., Tesi. M.C., Whittington, S.G.: The writhe of a self-avoiding polygon. J. Phys. A Math. Gen. 26, L981–L986 (1993).CrossRefGoogle Scholar
  36. [BZ2]
    Burde, G., Zieschang, H.: Knots. De Gruyter, Berlin, New York (1985).Google Scholar
  37. [Rol]
    Rolfsen, D.: Knots and Links. Publish or Perish (1976).Google Scholar
  38. [RCV]
    [RCV] Rybenkov, V. V., Cozzarelli, N. R. & Vologodskii, A. V.: Probability of DNA Knotting and the Effective Diameter of the DNA Double Helix. Proc. Natl. Acad. Sci. USA 90, 5307–5311 (1993).ADSCrossRefGoogle Scholar
  39. [ShW]
    [ShW] Shaw, S. Y., Wang, J. C.: Knotting of a DNA chain during ring closure. Science 260, 533–536 (1993).ADSCrossRefGoogle Scholar
  40. [WC]
    [WC] Wasserman, S. A., Cozzarelli, N. R.: Biochemical topology: applications to DNA recombination and replication. Science 232, 951–960 (1986).ADSCrossRefGoogle Scholar
  41. [SBS]
    [SBS] Stark, W.M., Boocock, M.R., Sherratt, D. J.: Site-specific recombination by Tn3 resolvase. Trends Genet. 5, 304–309 (1989).CrossRefGoogle Scholar
  42. [FLA]
    [FLA] Frank-Kamenetskii, M.D., Lukashin, A.V., Anshelevich, V.V., Vologodskii, A.V.: Torsional and bending rigidity of the double helix from data on small DNA rings. J. Biomol. Struct. Dyn. 2, 1005–1012 (1985).CrossRefGoogle Scholar
  43. [ES]
    [ES] Ernst, C., Sumners, D. W.: A Calculus for Rational Tangles: Applications to DNA Recombination. Math. Proc. Camb. Phil. Soc. 108, 489–515 (1990).zbMATHMathSciNetCrossRefGoogle Scholar
  44. [SKI]
    [SKI] Shishido, K., Komiyama, N., Ikawa, S.: Increased production of a knotted form of plasmid pBR322 DNA in Escherichia coli DNA topoisomerase mutants. J. Mol. Biol. 195, 215–218 (1987).CrossRefGoogle Scholar
  45. [LDC]
    [LDC] Liu, L. F., Davis, J. L., Calendar, R.: Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases. Nucleic Acids Res. 9, 3979–3989 (1981).CrossRefGoogle Scholar
  46. [LPC]
    [LPC] Liu, L. F., Perkocha, L., Calendar, R.. Wang, J. C.: Knotted DNA from Bacteriophage Capsids. Proc. Natl. Acad. Sci. USA 78, 5498–5502 (1981).ADSCrossRefGoogle Scholar
  47. [MML]
    [MML] Menissier, J., de Murcia, G., Lebeurier, G., Hirth, L.: Electron microscopic studies of the different topological forms of the cauliflower mosaic virus DNA: knotted encapsidated DNA and nuclear minichromosome. EMBO J. 2, 1067–1071 (1983).Google Scholar
  48. [Man]
    [Man] Mansfield, M. L.: Knots in Hamilton Cycles. Macromolecules 27, 5924–5926 (1994).ADSCrossRefGoogle Scholar
  49. [TRO]
    [TRO] Tesi, M. C., van Resburg, J.J.E., Orlandini, E., Whittington, S. G.: Knot probability for lattice polygons in confined geometries. J. Phys. A: Math. Gen 27, 347–360 (1994).ADSzbMATHCrossRefGoogle Scholar
  50. [MMO]
    [MMO] C. Micheletti, C, Marenduzzo, D., Orlandini, E., Sumners, D.W.: Knotting of Random Ring Polymers in Confined Spaces. J. Chem. Phys. 124, 064903 (2006).ADSCrossRefGoogle Scholar
  51. [TAV]
    [TAV] Trigueros, S, Arsuaga, J., Vazquez, M.E., Sumners, D.W., Roca, J.: Novel display of knotted DNA molecules by two-dimensional gel electrophoresis. Nucleic Acids Research 29, 67–71 (2001).CrossRefGoogle Scholar
  52. [AVT]
    [AVT] J. Arsuaga, M. Vazquez, S. Trigueros, D.W. Sumners and J. Roca, Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids, Proc. National Academy of Sciences USA 99, 5373–5377 (2002).ADSCrossRefGoogle Scholar
  53. [ArT]
    [ArT]Arsuaga, J., R. Tan, K-Z, Vazquez, M.E., Sumners, D.W., Harvey, S.C.: Investigation of viral DNA packing using molecular mechanics models. Biophysical Chemistry 101–102, 475–484 (2002).CrossRefGoogle Scholar
  54. [AVM]
    [AVM] Arsuaga, J., Vazquez, M.E., McGuirk, P., Sumners, D.W., Roca, J.: DNA Knots Reveal Chiral Organization of DNA in Phage Capsids. Proc. National Academy of Sciences USA 102, 9165–9169 (2005).ADSCrossRefGoogle Scholar
  55. [EC]
    [EC] Earnshaw, W. C., Casjens, S. R.: DNA packaging by the double-stranded DNA bacteriophages. Cell 21, 319–331 (1980).CrossRefGoogle Scholar
  56. [RHA]
    [RHA] Rishov, S., Holzenburg, A., Johansen, B.V., Lindqvist, B.H.: Bacteriophage P2 and P4 Morphogenesis: Structure and Function of the Connector. Virology 245, 11–17 (1998).CrossRefGoogle Scholar
  57. [STS]
    [STS] Smith, D.E., Tans, S.J., Smith, S.B., Grimes S., Anderson, D.L., Bustamante, C.: The bacteriophage ϕ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).ADSCrossRefGoogle Scholar
  58. [KCS]
    [KCS] Kellenberger, E., Carlemalm, E., Sechaud, J., Ryter, A., Haller, G.: Considerations on the condensation and the degree of compactness in non-eukaryotic DNA: in Bacterial Chromatin, eds. Gualerzi, C. & Pon, C. L. (Springer, Berlin), p. 11 (1986).Google Scholar
  59. [SB]
    [SB] San Martin, C., Burnett, R.: Structural studies on adenoviruses. Curr. Top. Microbiol. Immunol. 272, 57–94 (2003).Google Scholar
  60. [SDD]
    [SDD] Schmutz, M., Durand, D., Debin, A., Palvadeau, Y., Eitienne, E.R., Thierry, A. R.: DNA packing in stable lipid complexes designed for gene transfer imitates DNA compaction in bacteriophage. Proc. Natl. Acad. Sci. USA 96, 12293–12298 (1999).ADSCrossRefGoogle Scholar
  61. [ACT]
    [ACT] Aubrey, K., Casjens, S., Thomas, G.: Secondary structure and interactions of the packaged dsDNA genome of bacteriophage P22 investigated by Raman difference spectroscopy. Biochemistry 31, 11835–11842 (1992).CrossRefGoogle Scholar
  62. [EH]
    [EH] Earnshaw, W. C., Harrison, S.: DNA arrangement in isometric phage heads. Nature 268, 598–602 (1977).ADSCrossRefGoogle Scholar
  63. [LDB]
    [LDB] Lepault, J., Dubochet, J., Baschong, W., Kellenberger, E.: Organization of double-stranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples. EMBO J. 6, 1507–1512 (1987).Google Scholar
  64. [HMC]
    [HMC] Hass, R., Murphy, R.F., Cantor, C.R.: Testing models of the arrangement of DNA inside bacteriophage λ by crosslinking the packaged DNA. J. Mol. Biol. 159, 71–92 (1982).CrossRefGoogle Scholar
  65. [Ser]
    [Ser] Serwer, P.: Arrangement of double-stranded DNA packaged in bacteriophage capsids : An alternative model. J. Mol. Biol. 190, 509–512 (1986).CrossRefGoogle Scholar
  66. [RWC]
    [RWC] Richards, K., Williams, R., Calendar, R.: Mode of DNA packing within bacteriophage heads. J. Mol. Biol. 78, 255–259 (1973).CrossRefGoogle Scholar
  67. [CCR]
    [CCR] Cerritelli, M., Cheng, N., Rosenberg, A., McPherson, C., Booy, F., Steven, A.. Encapsidated Conformation of Bacteriophage T7 DNA. Cell 91, 271–280 (1997).CrossRefGoogle Scholar
  68. [BNB]
    [BNB] Black, L., Newcomb, W., Boring, J., Brown, J.: Ion Etching of Bacteriophage T4: Support for a Spiral-Fold Model of Packaged DNA. Proc. Natl. Acad. Sci. USA 82, 7960–7964 (1985).ADSCrossRefGoogle Scholar
  69. [Hud]
    [Hud] Hud, N.: Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model. Biophys. J. 69, 1355–1362 (1995).ADSCrossRefGoogle Scholar
  70. [JCJ]
    [JCJ] Jiang, W., Chang, J., Jakana, J., Weigele, P., King, J., Chiu, W.: Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439, 612–616 (2006).ADSCrossRefGoogle Scholar
  71. [WMC]
    [WMC] Wang, J.C., Martin, K.V., Calendar, R.: Sequence similarity of the cohesive ends of coliphage P4, P2, and 186 deoxyribonucleic acid. Biochemistry 12, 2119–2123 (1973).CrossRefGoogle Scholar
  72. [LDC]
    [LDC] Liu, L.F., Davis, J.L., Calendar, R.: Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases. Nucleic Acids Res. 9, 3979–3989 (1981).CrossRefGoogle Scholar
  73. [WMH]
    [WMH] Wolfson, J.S., McHugh, G.L., Hooper, D.C., Swartz, M.N.: Knotting of DNA molecules isolated from deletion mutants of intact bacteriophage P4. Nucleic Acids Res. 13, 6695–6702 (1985).CrossRefGoogle Scholar
  74. [IJC]
    [IJC] Isaken, M., Julien, B., Calendar, R., Lindgvist, B.H.: Isolation of knotted DNA from coliphage P4: in DNA Topoisomerase Protocols, DNA Topology, and Enzymes, eds. Bjornsti, M. A. & Osheroff, N. (Humana, Totowa, NJ), Vol. 94, pp. 69–74 (1999).Google Scholar
  75. [RDM]
    [RDM] Raimondi, A. Donghi, R., Montaguti, A., Pessina, A., Deho, G.: Analysis of spontaneous deletion mutants of satellite bacteriophage P4. J. Virol. 54, 233–235 (1985).Google Scholar
  76. [RUV]
    [RUV] Rybenkov, V.V., Ullsperger, C., Vologodskii, A.V., Cozarelli, N.R.: Simplification of DNA Topology Below Equilibrium Values by Type II Topoisomerases. Science 277, 690–693 (1997).CrossRefGoogle Scholar
  77. [MRR]
    [MRR] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 21, 1087–1092 (1953).ADSCrossRefGoogle Scholar
  78. [Mil]
    [Mil] Millet, K.: Knotting of Regular Polygons in 3-Space. In Series of Knots and Everything, eds. Sumners D.W. & Millet K.C. (World Scientific, Singapore), Vol. 7, pp. 31–46 (1994).Google Scholar
  79. [MS]
    [MS] Madras, N., Slade, G.: The Self-Avoiding Walk, Birkhauser, Boston (1993).zbMATHGoogle Scholar
  80. [DT2]
    [DT2] Deguchi, T., Tsurusaki, K.: A Statistical Study of Random Knotting Using the Vassiliev Invariants. J. Knot Theor. Ramifications 3, 321–353 (1994).zbMATHMathSciNetCrossRefGoogle Scholar
  81. [SKB]
    [SKB] Stasiak, A., Katrich, V., Bednar, J., Michoud, D., Dubochet, J.: Electrophoretic mobility of DNA knots. Nature 384, 122 (1996).ADSCrossRefGoogle Scholar
  82. [VCL]
    [VCL] Vologodskii, A.V., Crisona, N.J., Laurie, B., Pieranski, P., Katritch, V., Dubochet, J., Stasiak, A.: Sedimentation and electrophoretic migration of DNA knots and catenanes. J. Mol. Biol. 278, 1–3 (1998).CrossRefGoogle Scholar
  83. [KKS]
    [KKS] Kanaar, R., Klippel, A., Shekhtman, E., Dungan, J., Kahmann, R., Cozzarelli, N.R.: Processive recombination by the phage Mu Gin system: Implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action. Cell 62, 353–366 (1990).CrossRefGoogle Scholar
  84. [WSR]
    [WSR] Weber, C., Stasiak, A., De Los Rios, P., Dietler, G.: Numerical Simulation of Gel Electrophoresis of DNA Knots in Weak and Strong Electric Fields. Biophys. J. 90, 3100–3105 (2006).CrossRefGoogle Scholar
  85. [RSW]
    [RSW] van Rensburg, J., Sumners, D.W., Whittington, S.G.: The Writhe of Knots and Links, In Ideal Knots, Series on Knots and Everything, eds. Stasiak, A., Katritch, V., Kauffman, L.H. (World Scientific, Singapore), Vol. 19, 70–87 (1999).Google Scholar
  86. [MM]
    [MM] Marenduzzo, D., Micheletti, C.: Thermodynamics of DNA packaging inside a viral capsid: The role of DNA intrinsic thickness. J. Mol. Biol. 330, 485–492 (2003).CrossRefGoogle Scholar
  87. [MMT]
    [MMT] Maritan, A., Micheletti, C., Trovato, A., Banavar, J.: Optimal shapes of compact strings. Nature 406, 287–289 (2000).ADSCrossRefGoogle Scholar
  88. [TK]
    [TK] Tzil, S., Kindt, J.T., Gelbart, W., Ben-Shaul, A.: Nucleic acid packaging of DNA viruses. Biophys. J. 84, 1616–1627 (2003).ADSCrossRefGoogle Scholar
  89. [LL]
    [LL] LaMarque, J.C., Le, T.L., Harvey, S.C.: Packaging double-helical DNA into viral capsids. Biopolymers 73, 3480–355 (2004).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA

Personalised recommendations