Lectures on Topological Fluid Mechanics pp 99-138 | Cite as
Tangles, Rational Knots and DNA
Chapter
First Online:
- 1.8k Downloads
Abstract
This paper draws a line from the basics of rational tangles to the tangle model of DNA recombination. We sketch the classification of rational tangles, unoriented and oriented rational knots and the application of these subjects to DNA recombination.
Keywords
Continue Fraction Lens Space Jones Polynomial Reidemeister Move Link Diagram
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M. Asaeda, J. Przytycki and A. Sikora, Kauffman-Harary conjecture holds for Montesinos knots, J. Knot Theory Ramifications 13 (2004), no. 4, 467–477.zbMATHMathSciNetCrossRefGoogle Scholar
- 2.C. Bankwitz and H.G. Schumann, Über Viergeflechte, Abh. Math. Sem. Univ. Hamburg, 10 (1934), 263–284.CrossRefGoogle Scholar
- 3.S. Bleiler and J. Moriah, Heegaard splittings and branched coverings of B 3, Math. Ann., 281, 531–543.Google Scholar
- 4.E.J. Brody, The topological classification of the lens spaces, Annals of Mathematics, 71 (1960), 163–184.zbMATHMathSciNetCrossRefGoogle Scholar
- 5.G. Burde, Verschlingungsinvarianten von Knoten und Verkettungen mit zwei Brücken, Math. Zeitschrift, 145 (1975), 235–242.zbMATHMathSciNetCrossRefGoogle Scholar
- 6.G. Burde, H. Zieschang, “Knots”, de Gruyter Studies in Mathematics 5 (1985).Google Scholar
- 7.J.H. Conway, An enumeration of knots and links and some of their algebraic properties, Proceedings of the conference on Computational problems in Abstract Algebra held at Oxford in 1967, J. Leech ed., (First edition 1970), Pergamon Press, 329–358.Google Scholar
- 8.N. Cozzarelli, F. Dean, T. Koller, M. A. Krasnow, S.J. Spengler and A. Stasiak, Determination of the absolute handedness of knots and catenanes of DNA, Nature, 304 (1983), 550–560.Google Scholar
- 9.M.C. Culler, C.M. Gordon, J. Luecke and P.B. Shalen, Dehn surgery on knots, Annals of Math., 125 (1987), 237–300.zbMATHMathSciNetCrossRefGoogle Scholar
- 10.I. Darcy, Solving oriented tangle equations involving 4-plats, J. Knot Theory Ramifications 14 (2005), no. 8, 1007–1027.zbMATHMathSciNetCrossRefGoogle Scholar
- 11.I. Darcy, Solving unoriented tangle equations involving 4-plats, J. Knot Theory Ramifications 14 (2005), no. 8, 993–1005.zbMATHMathSciNetCrossRefGoogle Scholar
- 12.C.Ernst, D.W. Sumners, The growth of the number of prime knots, Math. Proc. Camb. Phil. Soc., 102 (1987), 303–315.zbMATHMathSciNetCrossRefGoogle Scholar
- 13.C.Ernst, D.W. Sumners, A calculus for rational tangles: Applications to DNA Recombination, Math. Proc. Camb. Phil. Soc., 108 (1990), 489–515.zbMATHMathSciNetCrossRefGoogle Scholar
- 14.C. Ernst, D. W. Sumners, Solving tangle equations arising in a DNA recombination model. Math. Proc. Cambridge Philos. Soc., 126, No. 1 (1999), 23–36.ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 15.W. Franz, Über die Torsion einer Überdeckung, J. Reine Angew. Math. 173 (1935), 245–254.Google Scholar
- 16.J.R. Goldman, L.H. Kauffman, Knots, Tangles and Electrical Networks, Advances in Applied Math., 14 (1993), 267–306.zbMATHMathSciNetCrossRefGoogle Scholar
- 17.J.R. Goldman, L.H. Kauffman, Rational Tangles, Advances in Applied Math., 18 (1997), 300–332.zbMATHMathSciNetCrossRefGoogle Scholar
- 18.V.F.R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985) no. 1, 103–111.zbMATHMathSciNetCrossRefGoogle Scholar
- 19.V.F.R. Jones, A new knot polynomial and von Neumann algebras, Notices Amer. Math. Soc. 33 (1986), no. 2, 219–225.MathSciNetGoogle Scholar
- 20.L.H. Kauffman, State models and the Jones polynomial, Topology, 26 (1987), 395–407.zbMATHMathSciNetCrossRefGoogle Scholar
- 21.L.H. Kauffman, An invariant of regular isotopy. Transactions of the Amer. Math. Soc., 318 (1990), No 2, 417–471.zbMATHMathSciNetCrossRefGoogle Scholar
- 22.L.H. Kauffman, Knot Logic, Knots and Applications, Series on Knots and Everything, 2, L.H. Kauffman ed., World Scientific, (1995).Google Scholar
- 23.L.H. Kauffman, “On knots”, Ann. of Math. Stud. 115, Princeton Univ. Press, Princeton, N.J., (1987).Google Scholar
- 24.L.H. Kauffman, “Formal Knot Theory”, Mathematical Notes 30, Princeton Univ. Press, Princeton, N.J., (1983), republished by Dover Publications (2006).Google Scholar
- 25.L.H. Kauffman, F. Harary, Knots and Graphs I - Arc Graphs and Colorings, Advances in Applied Mathematics, 22 (1999), 312–337.zbMATHMathSciNetCrossRefGoogle Scholar
- 26.L.H. Kauffman, S. Lambropoulou, On the classification of rational tangles, Advances in Applied Math. 33, No. 2 (2004), 199–237.zbMATHMathSciNetCrossRefGoogle Scholar
- 27.L.H. Kauffman, S. Lambropoulou, On the classification of rational knots, L' Enseignement Mathematiques 49 (2003), 357–410.zbMATHMathSciNetGoogle Scholar
- 28.A. Kawauchi, “A Survey of Knot Theory”, Birkhäuser Verlag (1996).Google Scholar
- 29.A.Ya. Khinchin, “Continued Fractions”, Dover (1997) (republication of the 1964 edition of Chicago Univ. Press).Google Scholar
- 30.K. Kolden, Continued fractions and linear substitutions, Archiv for Math. og Naturvidenskab, 6 (1949), 141–196.MathSciNetGoogle Scholar
- 31.D.A. Krebes, An obstruction to embedding 4-tangles in links. J. Knot Theory Ramifications 8 (1999), no. 3, 321–352.zbMATHMathSciNetCrossRefGoogle Scholar
- 32.W.B.R. Lickorish, “An introduction to knot theory”, Springer Graduate Texts in Mathematics, 175 (1997).Google Scholar
- 33.W. Menasco, M. Thistlethwaite, The classification of alternating links, Annals of Mathematics, 138 (1993), 113–171.zbMATHMathSciNetCrossRefGoogle Scholar
- 34.J.M. Montesinos, Revetements ramifies des noeuds, Espaces fibres de Seifert et scindements de Heegaard, Publicaciones del Seminario Mathematico Garcia de Galdeano, Serie II, Seccion 3 (1984).Google Scholar
- 35.K. Murasugi, “Knot Theory and Its Applications”, Translated from the 1993 Japanese original by Bohdan Kurpita. Birkhuser Boston, Inc., Boston, MA, (1996). viii+341 pp.Google Scholar
- 36.C.D. Olds, “Continued Fractions”, New Mathematical Library, Math. Assoc. of Amerika, 9 (1963).Google Scholar
- 37.L. Person, M. Dunne, J. DeNinno, B. Guntel and L. Smith, Colorings of rational, alternating knots and links, (preprint 2002, unpublished).Google Scholar
- 38.V.V. Prasolov, A.B. Sossinsky, “Knots, Links, Braids and 3-Manifolds”, AMS Translations of Mathematical Monographs 154 (1997).Google Scholar
- 39.K. Reidemeister, Elementare Begründung der Knotentheorie, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 24–32.CrossRefGoogle Scholar
- 40.K. Reidemeister, “Knotentheorie” (Reprint), Chelsea, New York (1948).Google Scholar
- 41.K. Reidemeister, Knoten und Verkettungen, Math. Zeitschrift, 29 (1929), 713–729.zbMATHMathSciNetCrossRefGoogle Scholar
- 42.K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Hansischen Univ., 11 (1936), 102–109.CrossRefGoogle Scholar
- 43.D. Rolfsen, “Knots and Links”, Publish or Perish Press, Berkeley (1976).Google Scholar
- 44.H. Seifert, Die verschlingungsinvarianten der zyklischen knotenüberlagerungen, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 84–101.CrossRefGoogle Scholar
- 45.J. Sawollek, Tait's flyping conjecture for 4-regular graphs, J. Combin. Theory Ser. B 95 (2005), no. 2, 318–332.zbMATHMathSciNetCrossRefGoogle Scholar
- 46.H. Schubert, Knoten mit zwei Brücken, Math. Zeitschrift, 65 (1956), 133–170.zbMATHMathSciNetCrossRefGoogle Scholar
- 47.L. Siebenmann, Lecture Notes on Rational Tangles, Orsay (1972) (unpublished).Google Scholar
- 48.D.W. Sumners, Untangling DNA, Math.Intelligencer, 12 (1990), 71–80.zbMATHMathSciNetCrossRefGoogle Scholar
- 49.C. Sundberg, M. Thistlethwaite, The rate of growth of the number of alternating links and tangles, Pacific J. Math., 182 No. 2 (1998), 329–358.zbMATHMathSciNetCrossRefGoogle Scholar
- 50.P.G. Tait, On knots, I, II, III, Scientific Papers, 1 (1898), Cambridge University Press, Cambridge, 273–347.Google Scholar
- 51.H.S. Wall, “Analytic Theory of Continued Fractions”, D. Van Nostrand Company, Inc. (1948).Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2009