Advertisement

Topological Quantities: Calculating Winding, Writhing, Linking, and Higher Order Invariants

  • Mitchell A. BergerEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1973)

Abstract

Many topological calculations can be done most easily using the basic idea of winding number. This chapter demonstrates the use of winding number techniques in calculating writhe, linking number, twist, and higher order braid invariants. The writhe calculation works for both closed and open curves. These measures have applications in molecular biology, materials science, fluid mechanics and astrophysics.

Keywords

Tangent Vector Boundary Plane Axis Curve Relative Position Vector Topological Quantity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AKT95]
    [AKT95] Aldinger J, Klapper I, & Tabor M: Formulae for the calculation and estimation of writhe. J. Knot Theory Ram., 4, 343–372 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [B91]
    [B91] Berger M A: Third order braid invariants. J. Physics A: Mathematical and General, 24, 4027–4036 (1991)ADSzbMATHCrossRefGoogle Scholar
  3. [B01]
    [B01] Berger M A: Topological invariants in braid theory. Letters in Math. Physics, 55, 181–192 (2001)zbMATHCrossRefGoogle Scholar
  4. [BP06]
    [BP06] Berger M A & Prior P: The writhe of open and closed curves. J. Physics A: Mathematical and General, 39, 8321–8348 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [Ba00]
    [Ba00] Baty H: Magnetic topology during the reconnection process in a kinked coronal loop. Astronomy and Astrophysics, 360, 345–350 (2000)ADSGoogle Scholar
  6. [C59]
    [C59] Călugăreanu G: Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants. Czechoslovak Math J, 11, 588–625 (1959)Google Scholar
  7. [C05]
    [C05] Cantarella J: On comparing the writhe of a smooth curve to the writhe of an inscribed polygon. SIAM J. of Numerical Analysis, 42, 1846–1861 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [CD00]
    [CD00] Chmutov S V & Duzhin S V: The Kontsevich Integral. Acta Appl. Math., 66, 155–190 (2000)MathSciNetCrossRefGoogle Scholar
  9. [DH05]
    [DH05] Dennis M R & Hannay J H: Geometry of Călugăreanu 's theorem. Proc. Roy. Soc. A, 461, 3245–3254 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [F78]
    [F78] Fuller F B: Decomposition of the linking of a ribbon: a problem from molecular biology. Proc. Natl. Acad. Sci. USA, 75, 3557–3561 (1978)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [GVV03]
    [GVV03] Ghrist R W, Van den Berg J B, & Vandervorst R C: Morse theory on spaces of braids and Lagrangian dynamics. Inventiones Mathematicae, 152, 369–432 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [K93]
    [K93] Kontsevich M: Vassiliev's knot invariants. Adv. Soviet Math., 16, 137–150 (1993)MathSciNetGoogle Scholar
  13. [KHS06]
    [KHS06] Kristiansen K D, Helgesen G, Skjeltorp A T: Braid theory and Zipf-Mandelbrot relation used in microparticle dynamics. European Physical J., B 51, 363–371 (2006)ADSGoogle Scholar
  14. [LK97]
    [LK97] Longcope D W & Klapper I: Dynamics of a thin twisted flux tube. Astrophysical J., 488, 443–453 (1997)ADSCrossRefGoogle Scholar
  15. [MR92]
    [MR92] Moffatt H K & Ricca R L: Helicity and the Călugăreanu invariant. Proc. Roy. Soc. A, 439, 411–429 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. [O94]
    [O94] Orlandini E, Test M C, Whittington S G, Sumners D W, & Janse van Rensburg E J: The writhe of a self-avoiding walk. J. Physics A: Mathematical and General, 27, L333–L338 (1994)ADSCrossRefGoogle Scholar
  17. [R05]
    [R05] Ricca R L: Inflexional disequilibrium of magnetic flux-tubes. Fluid Dynamics Research, 36, 319–332 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. [RM03]
    [RM03] Rossetto V & Maggs A C: Writhing geometry of Open DNA. J. Chem. Phys., 118, 9864–9874 (2003)ADSCrossRefGoogle Scholar
  19. [RK96]
    [RK96] Rust D M & Kumar A: Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett., 464, L199–L202 (1996)ADSCrossRefGoogle Scholar
  20. [S05]
    [S05] Starostin E L: On the writhing number of a non-closed curve. In: Calvo J, Millett K, Rawdon E, & Stasiak A (eds) Physical and Numerical Models in Knot Theory Including Applications to the Life Sciences. Series on Knots and Everything, World Scientific Publishing, Singapore 525–545 (2005)CrossRefGoogle Scholar
  21. [TK05]
    [TK05] Török T & Kliem B: Confined and ejective eruptions of kink-unstable flux ropes. Astrophysical J., 630, L97–L100 (2005)ADSCrossRefGoogle Scholar
  22. [VT00]
    [VT00] van der Heijden G H M & Thompson J M T: Helical and localised buckling in twisted rods: A unified analysis of the symmetric case. Nonlinear Dynamics, 21, 71–99 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  23. [VM97]
    [VM97] Vologodskii A V & Marko J F: Extension of torsionally stressed DNA by external force. Biophys. J., 73, 123–132 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Mathematics Dept.SECAM, University of ExeterExeterU.K.

Personalised recommendations