Braids and Knots

  • Patrick D. BangertEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 1973)


We introduce braids via their historical roots and uses, make connections with knot theory and present the mathematical theory of braids through the braid group. Several basic mathematical properties of braids are explored and equivalence problems under several conditions defined and partly solved. The connection with knots is spelled out in detail and translation methods are presented. Finally a number of applications of braid theory are given. The presentation is pedagogical and principally aimed at interested readers from different fields of mathematics and natural science. The discussions are as self-contained as can be expected within the space limits and require very little previous mathematical knowledge. Literature references are given throughout to the original papers and to overview sources where more can be learned.


Word Problem Braid Group Critical Pair Conjugacy Problem Jones Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, C., Hildebrand, M., Weeks, J. (1991): Hyperbolic Invariants of Knots and Links. Trans. Amer. Math. Soc., 326, 1–56.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Adian, S. I. (1957): The unsolvability of certain algorithmic problems in the theory of groups. Trudy Moskov. Mat. Obsc., 6, 231–298.MathSciNetGoogle Scholar
  3. 3.
    Adian, S. I. (1957): Finitely Presented Group and Algorithms. Dokl. Akad. Nauk SSSR, 117, 9–12.MathSciNetGoogle Scholar
  4. 4.
    Alexander, J. W. (1923): A lemma on systems of knotted curves. Proc. Nat. Acad. Sci. USA, 9, 93–95.ADSCrossRefGoogle Scholar
  5. 5.
    Appel, K. I. and Schupp, P. E. (1972): The Conjugacy Problem for the Group of any Tame Alternating Knot is Solvable. Proc. Amer. Math. Soc., 33, 329–336.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Artin, E. (1925): Theorie der Zöpfe. (in German) Abh. Math. Sem. Univ. Hamburg, 4, 47–72.zbMATHCrossRefGoogle Scholar
  7. 7.
    Artin, E. (1947): Theory of braids. Ann. Math., 48, 101–126.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Baader, F., Nipkow, T. (1998): Term Rewriting and All That. (Cambridge University Press, Cambridge).Google Scholar
  9. 9.
    Bangert, P. D., Berger, M. A., Prandi, R. (2002): In Search of Minimal Random Braid Configurations. J. Phys. A., 35, 43–59.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Berger, M. A. (1993): Energy-crossing number relations for braided magnetic fields. Phys. Rev. Lett., 70, 705–708.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Berger, M. A. (1994): Minimum crossing numbers for 3-braids. J. Phys. A, 27, 6205–6213.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Berger, M.A. (2000): Hamiltonian dynamics generated by Vassiliev invariants. J. Phys. A., 34, 1363–1374.ADSCrossRefGoogle Scholar
  13. 13.
    Bigelow, S. (1999): The Burau representation is not faithful for n = 5. Geometry and Topology, 3, 397–404.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Birman, J. S. (1974): Braids, Links and Mapping Class Groups. Ann. of Math. Studies 82 (Princeton Univ. Press, Princeton).Google Scholar
  15. 15.
    Birman, J. S., Ko, K. H., Lee, S. J. (1998): A New Approach to the Word and Conjugacy Problems in the Braid Groups. Ad. Math., 139, 322–353.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Birman, J. S., Menasco, W. (1992): Studying Links Via Closed Braids I: A Finiteness Theorem. Pacific J. Math., 154, 17–36.zbMATHMathSciNetGoogle Scholar
  17. 17.
    Birman, J. S., Menasco, W. (1991): Studying Links Via Closed Braids II: On a Theorem of Bennequin. Topology and Its Applications, 40, 71–82.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Birman, J. S., Menasco, W. (1993): Studying Links Via Closed Braids III: Classifying Links which are Closed 3-braids. Pacific J. Math., 161, 25–113.zbMATHMathSciNetGoogle Scholar
  19. 19.
    Birman, J. S., Menasco, W. (1990): Studying Links Via Closed Braids IV: Closed Braid Representatives of Split and Composite Links. Invent. Math., 102, 115–139.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Birman, J. S., Menasco, W. (1992): Studying Links Via Closed Braids V: Closed Braid Representatives of the Unlink. Trans. AMS, 329, 585–606.zbMATHMathSciNetGoogle Scholar
  21. 21.
    Birman, J. S., Menasco, W. (1992): Studying Links Via Closed Braids VI: A Non-Finiteness Theorem. Pacific J. Math., 156, 265–285.zbMATHMathSciNetGoogle Scholar
  22. 22.
    Birman, J. S., Menasco, W. (1992): A calculus on links in the 3-sphere. in Kawauchi, A. Knots 90 (Walter de Gruyter, Berlin), 625–631.Google Scholar
  23. 23.
    Birman, J. S., Wajnryb, B. (1986): Markov Classes in Certain Finite Quotients of Artin's Braid Group. Israel J. Math., 56, 160–178.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Birkhoff, G. (1935): On the structure of abstract algebras. Proc. Camb. Phil. Soc., 31, 433–454.ADSCrossRefGoogle Scholar
  25. 25.
    Bohnenblust, F. (1947): The Algebraical Braid Group. Ann. Math., 46, 127–136CrossRefMathSciNetGoogle Scholar
  26. 26.
    Boyland, P. L., Aref, H., Stremler, M. A. (2000): Topological fluid mechanics of stirring. J. Fluid Mech., 403, 277–304.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Buchberger, B. (1987): History and Basic Features of the Critical-Pair/Completion Procedure. J. Sym. Comp. 3, 3–38. Printed in Rewriting Techniques and Applications ed. by Jouannaud, J.-P. (Academic Press, London), 3–38.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Chan, T. (2000): HOMFLY polynomials of some generalized Hopf links. J. Knot Th. Rami., 9, 865–883.zbMATHCrossRefGoogle Scholar
  29. 29.
    Cohen, D.E. (1987): Computability and Logic. (Ellis Horwood, Chichester).zbMATHGoogle Scholar
  30. 30.
    Conway, J.H. (1970): An Enumeration of Knot and Links, and Some of their Algebraic Properties. in Leech, J. (1970): Computational Problems in Abstract Algebra. (Pergamon, Oxford)Google Scholar
  31. 31.
    Coxeter, H.S.M., Moser, W.O.J. (1957): Generators and Relations for Discrete Groups. (Springer, Berlin)zbMATHGoogle Scholar
  32. 32.
    Dershowitz, N. (1979): A note on simplification orderings. Inform. Proc. Let., 9, 212–215.zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Dershowitz, N. (1981): Termination of linear rewriting systems. in Automata, Languages and Programming ed. by Even, S. and Kariv, O., Lecture Notes in Computer Science Volume 115 (Springer, Heidelberg), 448–458.CrossRefGoogle Scholar
  34. 34.
    Dershowitz, N. (1987): Termination of Rewriting. J. Sym. Comp., 3, 69–116. Printed in Rewriting Techniques and Applications ed. by Jouannaud, J.-P. (Academic Press, London), 69–116.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Dowker, C. H. and Thistlethwaite, M. B. (1983): Classification of Knot Projections. Top. Appl., 16, 19–31.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P. (1992): Word Processing in Groups. (Jones and Bartlett, Boston).zbMATHGoogle Scholar
  37. 37.
    Garside, F.A. (1969): The braid group and other groups. Quart. J. Math. Oxford, 20, 235–254.zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Gilbert, N.D., Porter, T. (1994): Knots and Surfaces. (Oxford University Press, Oxford).Google Scholar
  39. 39.
    Hemion, G. (1992): The Classification of Knots and 3-dimensional Spaces. (Oxford Univ. Press, Oxford).zbMATHGoogle Scholar
  40. 40.
    Hempel, J. (1976): 3-manifolds. Ann. of Math. Studies Volume 86 (Princeton Uni. Press, Princeton).Google Scholar
  41. 41.
    Huet, G. (1980): Confluent reductions: Abstract properties and applications to term rewriting systems. J. Assoc. Comput. Mach., 27, 797–821.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Huet, G. (1981): A Complete Proof of the Knuth-Bendix Completion Algorithm. J. Comp. Syst. Sci., 23, 11–21.zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Huet, G., Lankford, D.S. (1978): On the uniform halting problem for term rewriting systems. Rapport laboria 283, Institut de Recherche en Informatique et en Automatique, Le Chesnay, France.Google Scholar
  44. 44.
    Jacquemard, A. (1990): About the effective classification of conjugacy classes of braids. J. Pure Appl. Al., 63, 161–169.zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Johnson, D.L. (1980): Topics in the Theory of Group Presentations. Lon. Math. Soc. Lec. Notes Vol. 42 (Cambridge Uni. Press, Cambridge).zbMATHCrossRefGoogle Scholar
  46. 46.
    Jouannoud, J.P., Kirchner, H. (1986): Completion of a set of rules modulo a set of equations, SIAM. J. Comp., 15, 1155–1194.Google Scholar
  47. 47.
    Kang, E. S. et al. (1997): Band-generator presentation for the 4-braid group. Top. Appl., 78, 39–60.zbMATHCrossRefGoogle Scholar
  48. 48.
    Kauffman, L. (1993): Knots and Physics. Series on Knots and Everything Vol. 1. World Scientific, Singapore.Google Scholar
  49. 49.
    Kawauchi, A. (1996): A Survey of Knot Theory. (Birkhäuser Verlag, Basel)zbMATHGoogle Scholar
  50. 50.
    Knuth, D.E., Bendix, P.B. (1970): Simple word problems in universal algebras. in Computational Problems in Abstract Algebra ed. by Leech, J. (Pergamon Press, Oxford), 263–297. Reprinted in 1983 in Automation of Reasoning 2 (Springer, Berlin), 342–376.Google Scholar
  51. 51.
    Lambropoulou, S.S.F. (1993): A Study of Braid in 3-manifolds. unpublished PhD thesis (Univ. of Warwick).Google Scholar
  52. 52.
    Lambropoulou, S.S.F., Rourke, C.P. (1997): Markov's Theorem in 3-manifolds. Top. Appl., 78, 95–22.zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    The CiME system is available from
  54. 54.
    Magnus, W., Peluso, A. (1967): On Knot Groups. Comm. Pure Appl. Math., 20, 749–770.zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Markov, A.A. (1935): Über die freie Äquivalenz geschlossener Zöpfe (in German), Recueil Mathematique Moscou, 1, 73–78. [Mat. Sb. 43 1936.]Google Scholar
  56. 56.
    McCool, J. (1980): On Reducible Braids. in Word Problems II ed. by Adian, S. I., Boone, W. W. and Higman, G. (North-Holland, Amsterdam), 261–295.CrossRefGoogle Scholar
  57. 57.
    Miller, C.F. III (1992): Decision Problems for Groups - Survey and Reflections. in Algorithms and Classification in Combinatorial Group Theory ed. by Baumslag, G. and Miller, C. F. III, Math. Sci. Re. Inst. Pub. Volume 23 (Springer, New York), 1–59.CrossRefGoogle Scholar
  58. 58.
    Morton, H.R. (1983): An irreducible 4-string braid with unknotted closure. Math. Proc. Camb. Phil. Soc., 93, 259–261.zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Morton, H.R. (1986): Threading Knot Diagrams. Math. Proc. Camb. Phil. Soc., 99, 247–260.zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Murasugi, K. (1996): Knot Theory And Its Applications. (Birkhäuser, Boston).zbMATHGoogle Scholar
  61. 61.
    Murasugi, K., Thomas, R.S.D. (1972): Isotopic closed nonconjugate braids. Proc. Am. Math. Soc., 33, 137–139.zbMATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Newman, M.H.A. (1942): On theories with a combinatorial definition of ‘equivalence’. Ann. Math., 43, 223–243.zbMATHCrossRefGoogle Scholar
  63. 63.
    Paterson, M.S., Razborov, A.A. (1991): The set of minimal braids is co-NP-complete. J. Algorithms, 12, 393–408.zbMATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Rabin, M.O. (1958): Recursive Unsolvability of Group Theoretic Problems. Ann. Math., 67, 172–194.zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Reidemeister, K. (1983): Knot Theory. BCS Associates, Moscow, Idaho. Originally published as Reidemeister, K. (1932): Knotentheorie. Springer, BerlinzbMATHGoogle Scholar
  66. 66.
    Ricca, R.L. (1998): Applications of Knot Theory in Fluid Mechanics. in Jones, V.F.R. et. al., ed. by Knot Theory Banach Center Pub. Vol. 42 (Inst. of Math., Polish Acad. Sci., Warszawa), 321–346.Google Scholar
  67. 67.
    Schubert, H. (1948): Die Eindeutige Zerlegbarkeit eines Knotens in Primknoten. (in German), Sitz. Heidelberger Akad. Wiss., math.-nat. Kl., 55–104.Google Scholar
  68. 68.
    Schubert, H. (1961): Bestimmung der Primfaktorzerlegung von Verkettungen. (in German), Math. Zeitschr., 76, 116–148.zbMATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Tatsuoka, K. (1987): Geodesics in the braid group. preprint, Dept. of Mathematics, University of Texas at Austin.Google Scholar
  70. 70.
    Tourlakis, G.J. (1984): Computability. (Reston, Reston).zbMATHGoogle Scholar
  71. 71.
    Turing, A.M. (1937): On Computable Numbers, with an Application to the Entscheidungsproblem. Proc. London Math. Soc. Ser. 2, 42, 230–265.CrossRefGoogle Scholar
  72. 72.
    Vogel, P. (1990): Representation of links by braids: A new algorithm. Comment. Math. Helvetici, 65, 104–113.zbMATHCrossRefGoogle Scholar
  73. 73.
    Waldhausen, F. (1968): On Irreducible 3-manifolds which are Sufficiently Large. Ann. Math., 87, 56–88.zbMATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    Waldhausen, F. (1968): The Word Problem in Fundamental Groups of Sufficiently Large Irreducible 3-manifolds. Ann. Math., 88, 272–280.zbMATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Williams, R.F. (1988): The Braid Index of an Algebraic Link. In: Birman, J. S., Libgober, A. (ed) Braids. Amer. Math. Soc., Providence.Google Scholar
  76. 76.
    Xu, P.J. (1992): The genus of closed 3-braids. J. Knot Theory Ramifications, 1, 303–326.zbMATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Yamada, S. (1987): The minimal number of Seifert circles equals the braid index of a link. Invent. Math., 89, 347–356.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Yoder, M.A. (1995): String Rewriting Applied to Problems in the Braid Groups. unpublished Ph.D. thesis (Uni. South Florida).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Mathematisch InstituutGermany

Personalised recommendations