Skip to main content

Fractals and the Fock-Bargmann Representation of Coherent States

  • Conference paper
Quantum Interaction (QI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5494))

Included in the following conference series:

Abstract

The self-similarity property of deterministic fractals is studied in the framework of the theory of entire analytical functions. The functional realization of fractals in terms of the q-deformed algebra of coherent states is presented. This sheds some light on the dynamical formation of fractals and provides some insight into the geometrical properties of coherent states. The global nature of fractals appears to emerge from coherent local deformation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunde, A., Havlin, S. (eds.): Fractals in Science. Springer, Berlin (1995)

    Google Scholar 

  2. Peitgen, H.O., Jürgens, H., Saupe, D.: Chaos and fractals. New Frontiers of Science. Springer, Berlin (1986)

    MATH  Google Scholar 

  3. Vitiello, G.: Topological defects, fractals and the structure of quantum field theory. In: Licata, I., Sakaji, A. (eds.) The Nature Description in Quantum Field Theory. Open Problems and Epistemological Perspective. Springer, Berlin (in print, 2009)

    Google Scholar 

  4. Vitiello, G.: Coherent states, fractals and brain waves. New Mathematics and Natural Computation 5 (in print, 2009); Vitiello, G.: Self-similarity in fractals and coherent states (in preparation, 2009)

    Google Scholar 

  5. Vitiello, G.: Classical chaotic trajectories in quantum field theory. Int. J. Mod. Phys. B18, 785 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bak, P., Creutz, M.: Fractals and self-organized criticality. In: Bunde, A., Havlin, S. (eds.) Fractals in Science. Springer, Berlin (1995)

    Google Scholar 

  7. Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  8. Klauder, J.R., Skagerstam, B.: Coherent States. World Scientific, Singapore (1985)

    Book  MATH  Google Scholar 

  9. Celeghini, E., De Martino, S., De Siena, S., Rasetti, M., Vitiello, G.: Quantum groups, coherent states, squeezing and lattice quantum mechanics. Annals of Physics 241, 50 (1995); Celeghini, E., Rasetti, M., Tarlini, M., Vitiello, G.: SU(1,1) Squeezed States as Damped Oscillators. Mod. Phys. Lett. B3, 1213 (1989); Celeghini, E., Rasetti, M., Vitiello, G.: On squeezing and quantum groups. Phys. Rev. Lett. 66, 2056 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Yuen, H.P.: Two-photon coherent states of the radiation field. Phys. Rev. 13, 2226 (1976)

    Article  ADS  Google Scholar 

  11. Umezawa, H.: Advanced Field Theory: Micro, Macro and Thermal Physics. American Institute of Physics (1993)

    Google Scholar 

  12. Vitiello, G.: Defect Formation Through Boson Condensation in Quantum Field Theory. In: Bunkov, Y.M., Godfrin, H. (eds.) Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions. Kluwer Academic Press, Dordrecht (2000)

    Google Scholar 

  13. Iorio, A., Vitiello, G.: Quantum dissipation and quantum groups. Annals of Physics 241, 496 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Iorio, A., Vitiello, G.: Quantum groups and von Neumann theorem. Mod. Phys. Lett. B8, 269 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Freeman, W.J., Vitiello, G.: Brain dynamics, dissipation and spontaneous breakdown of symmetry. J. Phys. A: Math. Theor. 41, 304042 (2008), http://Select.iop.org.q-bio.NC/0701053v1

    Article  Google Scholar 

  16. Freeman, W.J.: Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin. Neurophysiol. 115, 2077 (2004)

    Google Scholar 

  17. Freeman, W.J.: Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin. Neurophysiol. 115, 2089 (2004)

    Google Scholar 

  18. Braitenberg, V., Schüz, A.: Anatomy of the Cortex: Statistics and Geometry. Springer, Berlin (1991)

    Book  Google Scholar 

  19. Linkenkaer-Hansen, K., Nikouline, V.M., Palva, J.M., Iimoniemi, R.J.: Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 15, 1370 (2001)

    Google Scholar 

  20. Hwa, R.C., Ferree, T.: Scaling properties of fluctuations in the human electroencephalogram. Phys. Rev. E 66, 021901 (2002)

    Article  ADS  Google Scholar 

  21. Wang, X.F., Chen, G.R.: Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst. 31, 6 (2003)

    Article  Google Scholar 

  22. Freeman, W.J.: A field-theoretic approach to understanding scale-free neocortical dynamics. Biol. Cybern. 92(6), 350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Franken, P., Malafosse, A., Tafti, M.: Genetic variation in EEG activity during sleep in inbred mice. Am. J. Physiol. 275, R1127 (1998)

    Google Scholar 

  24. Lyamin, O.I., Mukhametov, I.M., Siegel, J.M., Nazarenko, E.A., Polyakova, I.G., Shpak, O.V.: Unihemispheric slow wave sleep and the state of the eyes in a white whale. Behav. Brain Res. 129, 125 (2002)

    Article  Google Scholar 

  25. Freeman, W.J., Vitiello, G.: Nonlinear brain dynamics as macroscopic manifestation of underlying many-body dynamics. Phys. of Life Reviews 3, 93 (2006)

    Article  ADS  Google Scholar 

  26. Vitiello, G.: Dissipation and memory capacity in the quantum brain model. Int. J. Mod. Phys. B9, 973 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vitiello, G. (2009). Fractals and the Fock-Bargmann Representation of Coherent States . In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds) Quantum Interaction. QI 2009. Lecture Notes in Computer Science(), vol 5494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00834-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00834-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00833-7

  • Online ISBN: 978-3-642-00834-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics