Skip to main content

Diversität und Funktionen von Pilzen in Böden

  • Chapter
Mikrobiologie von Böden

Part of the book series: Springer-Lehrbuch ((SLB))

  • 10k Accesses

Zusammenfassung

Die Pilze umfassen eine heterogene Gruppe aus Echten Pilzen (Reich der Opisthokonta, Fungi) und pilzähnlichen Organismen wie die Schleimpilze (Phylum Myxomycota, Amoebozoa, Eumycetazoa) und Pseudofungi oder Eipilze (Phylum Oomycota, Chromalveolata, Stramenopiles). Pilze sind kohlenstoff-heterotrophe chlorophyllfreie eukaryotische Organismen (ohne Photo- und Chemolithoautotrophie), die morphologisch, cytologisch und phylogenetisch sehr unterschiedlich sind. Den verschiedenen Echten Pilzen und pilzähnlichen Organismen ist der eukaryotische Aufbau ihrer Zellen mit mindestens einem echten Zellkern und einem Cytoskelett (mit Mikrotubuli aus α- und β-Tubulin) sowie die heterotrophe (saprophytische und/oder parasitische) Lebensweise gemeinsam. Sowohl für die Echten Pilze als auch für die pilzähnlichen Organismen sind Böden, Streuauflagen, Komposte und Gewässersedimente die wichtigsten Lebensräume. Im Haushalt der Natur nehmen die Fungi als Reduzente (Saprophyten) eine Schlüsselstellung ein. Sie haben sich an die verschiedenen ökologischen Nischen in Böden, Streuauflagen, Rhizo- und Phyllosphäre sehr gut angepasst und besitzen infolgedessen eine sehr hohe Diversität, die noch weitgehend unerforscht ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JB et al. (2005) The new higher level classification of eucaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52: 399–451

    Article  PubMed  Google Scholar 

  • Anderson IC, Cairney JWA (2004) Diversity and ecology of soil fungal communities: Increased understanding through the application of molecular techniques. Environ Microbiol 6: 769–779

    Article  PubMed  CAS  Google Scholar 

  • Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5: 36–47

    Article  PubMed  CAS  Google Scholar 

  • Anderson IC, Parkin PI (2007) Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. J Microbiol Meth 68: 248–253

    Article  CAS  Google Scholar 

  • Baldauf S, Doolittle WF (1997) Origin and evolution of the slime molds (Mycetazoa). Proc Natl Acad Sci USA 94: 12007–12012

    Article  PubMed  CAS  Google Scholar 

  • Barr DJS (2001) Chytridiomycota. In: McLaughlin DJ, McLaughlin EG, Lemke PA (Hrsg) The mycota VIIA. Systematics and evolution, Springer, Berlin, S 93–112

    Google Scholar 

  • Bridge PD, Arora DK (1998) Interpretation of PCR methods for species definition. In: Bridge PD, Arora DK, Reddy CA, Elander RP (Hrsg) Applications of PCR in mycology, CAB International, UK, S 63–84

    Google Scholar 

  • Bridge PD, Spooner B (2001) Soil fungi: Diversity and detection. Plant Soil 232: 147–154

    Article  CAS  Google Scholar 

  • Bridge PD, Roberts PJ, Spooner BM, Panchal G (2003) On the unreliability of published DNA sequences. New Phytol 160: 43–48

    Article  CAS  Google Scholar 

  • Bruns TD (2001) ITS reality. Inoculum 52: 2–3

    Google Scholar 

  • Bruns TD, Vilgalys R, Barns SM, Gonzalez D, Hibbett DS, Lane DJ, Simon L et al. (1992) Evolutionary relationships within the fungi: Analyses of nuclear small subunits rRNA sequences. Mol Phylog Evol 1: 231–241

    Article  CAS  Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22: 525–564

    Article  Google Scholar 

  • Buchan A, Newell SY, Moreta JIL, Moran MA (2002) Analysis of internal transcribed spacer (ITS) regions of rRNAgenes in fungal communities in a southeastern US salt marsh. Microb Ecol 43: 329–340

    Article  PubMed  CAS  Google Scholar 

  • Burth I, Ottow JCG (1983) Influence of pH on the production of N2O and N2 by different denitrifying bacteria and Fusarium solani. Ecol Bull (Stockholm) 35: 207–215

    CAS  Google Scholar 

  • Crespo A, Cubero OF, Grube M (1998) PCR applications in studies on lichen-forming fungi. In: Bridge PD, Arona DK, Reddy CA, Elander RP (Hrsg) Applications of PCR in mycology, CAB Intern, Wallingford, S 85–106

    Google Scholar 

  • Daboussi MJ, Capy P (2003) Transposable elements in filamentous fungi. Annu Rev Microbiol 57: 75–99

    Article  Google Scholar 

  • De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29: 795–811

    Article  PubMed  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1993) Compendium of soil fungi, Vol. I. IHW, Eching

    Google Scholar 

  • Dörfelt H (1989) Lexikon der Mykologie, G. Fischer, Stuttgart

    Google Scholar 

  • Down G (2002) Fungal family trees – Finding relationships from molecular data. Mycologist 16: 51–58

    Article  Google Scholar 

  • Elsas van JD, Duarte GF, Keijzer-Woltes A, Smit E (2000) Analysis of the dynamics of fungal communities in soil via fungalspecific PCR of soil DNAfollowed by denaturing gradient gel electrophoresis. J Microbiol Meth 43: 133–151

    Article  Google Scholar 

  • Finlay RD (2007) The fungi in soil. In: Elsas van JD, Jansson JK, Trevors JT (Hrsg) Modern soil microbiology, CRC, Boca Raton London New York, S 108–144

    Google Scholar 

  • Fiore-Donno AM, Berney C, Pawlowski J, Baldauf SL (2005) Higher-order phylogeny of plasmodial slime molds (Myxogastria) based on elongation factor 1-A and small subunit rRNA gene sequences. J Eucaryot Microbiol 52: 201–210

    Article  CAS  Google Scholar 

  • Foster SJ, Monahan BJ, Bradshaw RE (2006). Genomics of the filamentous fungi – moving from the shadow of the bakers yeast. Mycologist 20: 10–14

    Article  Google Scholar 

  • Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mykorrhizal networks. New Phytol 151: 717–724

    Article  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: Magnitude, significance, and conservation. Mycol Res 95: 641–655

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol Res 105: 1422–1432

    Article  Google Scholar 

  • Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50: 9–18

    Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathol 87: 888–891

    Article  CAS  Google Scholar 

  • Hibbett DS (2006) A phylogenetic overview of the Agaricomycotina. Mycologia 98: 917–920

    Article  PubMed  Google Scholar 

  • Hibbett DS (2007) After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century. Mycol Res 111: 1001–1018

    Article  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S et al. (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111: 509–547

    Article  PubMed  Google Scholar 

  • Hibbett DS, Thorn RG (2001) Basidiomycota: Homobasidiomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke P (Hrsg) The mycota VII. Systematics and evolution, Springer, New York, S 121–168

    Google Scholar 

  • Hijri M, Hosney M, van Tuinen D, Dulieu H (1999) Intraspecific ITS polymorphism in Scutellospora castanea (Glomales, Zygomycota) is structured within multinucleate spores. Fungal GenBiol 26: 141–151

    Article  CAS  Google Scholar 

  • Hirsch PR, Atkins SD, Mauchline TH, Morton O, Davies KG, Kerry BR (2001) Methods for studying the nematophaguous fungus Verticillium chlamydosporium in the root environment. Plant Soil 232: 21–30

    Article  CAS  Google Scholar 

  • Hoekstra RF (1994) Population genetics of filamentous fungi. Antonie van Leeuwenhoek 65: 199–204

    Article  PubMed  CAS  Google Scholar 

  • Hong SB, Shin HD, Frisvad JC (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97: 1316–1329

    Article  PubMed  CAS  Google Scholar 

  • Hoog de GS, Smith MT (2004) Ribosomal gene phylogeny and species delimitation in Geotrichum and its teleomorphs. Studies Mycol 50: 489–515

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V et al. (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443: 818–822

    Article  PubMed  CAS  Google Scholar 

  • Kilbertus G, Proth J, Mangenot F (1977) Sur la repartition et la survivance des microorgnismes du sol. Etude electronique. Bull Acad Soc Lorraines Sci 16: 93–104

    Google Scholar 

  • Klein DA(2007) Diversity of chytrids. In: Benckiser G, Schnell S (Hrsg) Biodiversity in agricultural production systems, CRS, Boca Raton, USA S 81–100

    Google Scholar 

  • Kranner I, Zorn M, Turk B, Wrnik S, Beckett RP, Batic F (2003) Biochemical traits of lichens differing in relative dessication tolerance. New Phytol 160: 167–176

    Article  CAS  Google Scholar 

  • Laufer Z, Beckett RP, Minibayeva FV (2006) Co-occurrence of multicopper oxidase tyrosinase and laccase in lichens in sub-order Peltigerineae. Ann Bot 98: 1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Jeewon R, Hyde KD, Mo M, Zhang KQ (2006) Two new species of nematode-trapping fungi: Relationships inferred from morphology, rDNAand protein gene sequence analyses. Mycol Res 110: 790–800

    Article  PubMed  CAS  Google Scholar 

  • Lozupone CA, Klein DA (2002) Molecular and cultural assessment of chytrid and Spizellomyces populations in grassland soils. Mycologia 94: 411–420

    Article  PubMed  CAS  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G et al. (2004) Assembling the fungal tree of life: Progress, classification, and evolution of subcellular traits. Amer J Bot 91: 1446–1480

    Article  Google Scholar 

  • Luo H, Li X, Li G, Pan Y, Zhang K (2006) Acanthocytes of Stropharia rugosoannulata function as a nematode-attacking device. Appl Environ Microbiol 72: 2982–2987

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Mo M, Huang X, Li X, Zhang K (2004) Coprinus comatus: A basidiomycet fungus forms novel spiny structures and infects nematode. Mycologia 96: 1218–1225

    Article  PubMed  Google Scholar 

  • Malinowski P, Ottow JCG (1991) Ecological conditions and physiological mechanism of N2O-formation from nitrite by Fusarium solani. In: Berthelin J (Hrsg) Diversity of environmental biogeochemistry, Elsevier, Amsterdam Oxford New York, S 287–294

    Google Scholar 

  • Martin MP, Lado C, Johansen S (2003) Primers are designed for amplification and direct sequencing of ITS region of rDNA from myxomycetes. Mycologia 95: 474–479

    Article  PubMed  CAS  Google Scholar 

  • Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5: 1–11

    Article  Google Scholar 

  • Moncalvo JM (2005) Fungal species concepts. In: Xu J (Hrsg) Genetics of fungi. Horizon Bioscience, UK, S 1–34

    Google Scholar 

  • Mitchell JI, Zuccaro A (2006) Sequences, the environment and fungi. Mycologist 20: 62–74

    Article  Google Scholar 

  • Nishida H, Suggiyama J (1994) Archiascomycetes: Detection of a major new lineage within the Ascomycota. Mycoscience 35: 361–366

    Article  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalyas R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71: 103–116

    Google Scholar 

  • Ottow JCG (1969) Mechanism of iron reduction by nitrate reductase inducible aerobic microorganisms. Naturwiss 7: 371–372

    Article  Google Scholar 

  • Ottow JCG, von Klopotek A (1969) Enzymatic reduction of iron oxide by fungi. Appl Microbiol 18: 41–43

    PubMed  CAS  Google Scholar 

  • Ottow JCG, Burth-Gebauer I, El Demerdash ME (1985) Influence of pH and partial oxygen pressure on the N2O-N to N2 ratio of denitrification. In: Golterman HL (Hrsg) Denitrification in the nitrogen cycle, Plenum, New York, S 101–120

    Google Scholar 

  • Pujol C, Dodgson A, Soll DR (2005) Population genetics of ascomycetes pathogenic to humans and animals. In: Xu J (Hrsg) Genetics of fungi. Horizon Bioscience, UK, S 149–188

    Google Scholar 

  • Ranjard L, Poly F, Lata JC, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: Biological and methodological variability. Appl Environ Microbiol 67: 4479–4487

    Article  PubMed  CAS  Google Scholar 

  • Roca MG, Read ND, Wheals AE (2005) Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol Lett 249: 191–198

    Article  CAS  Google Scholar 

  • Rodriguez A, Clapp JP, Dodd JC (2004) Ribosomal RNA gene sequence diversity in arbuscular mykorrhizal fungi (Glomeromycota). J Ecol 92: 986–989

    Article  CAS  Google Scholar 

  • Rosewich UL, Kistler HC (2000) Role of horizontal gene transfer in the evolution of fungi. Annu Rev Phytopathol 38: 325–363

    Article  PubMed  CAS  Google Scholar 

  • Sanders IR, Alt M, Groppe K, Boller T, Wiemken A (1995) Identification of ribosomal DNA polymorphismus among and within spores of the Glomales: Application to studies on the genetic diversity of arbuscular mykorrhizal fungal communities. New Phytol 130: 419–427

    Article  CAS  Google Scholar 

  • Sati SC, Belwal M (2005) Aquatic hyphomycetes as endophytes of riparian plant roots. Mycologia 97: 45–49

    Article  PubMed  CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol Res 105: 1413–1421

    Article  Google Scholar 

  • Shoun H, Kim DH, Uchiyama H, Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol Lett 94: 277–382

    Article  CAS  Google Scholar 

  • Smith E, Leeflang P, Glandorf B, van Elsass JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rDNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65: 2614–2621

    Google Scholar 

  • Sokolski S, Piché Y, Chauvet E, Bérubé JA (2006) A fungal endophyte of black spruce (Picea mariana) needles is also an aquatic hyphomycete. Mol Ecol 15: 1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Swanson AR, Spiegel FW (2002) Taxonomy, slime molds, and the question we ask. Mycologia 94: 968–979

    Article  PubMed  Google Scholar 

  • Schwantes HO (1996) Biologie der Pilze, Eugen Ulmer, Stuttgart

    Google Scholar 

  • Taylor JW (1995) Making the Deuteromycota redundant: A practical integration of mitosporic and meiosporic fungi. Can J Bot 73: 754–759

    Article  Google Scholar 

  • Tehler AJS, Farris DL, Källersjö LM (2003) Phylogenetic analysis of the fungi based on large rDNA data sets. Mycologia 92: 459–474

    Article  Google Scholar 

  • Thorn RG, Barron GL (1984) Carnivorus mushrooms. Science 224: 76–78

    Article  PubMed  CAS  Google Scholar 

  • Thorn RG, Moncalvo JM, Reddy CA, Vilgaly R (2000) Phylogenitic analyses and the distribution of nematophagy support a monophyletic Pleurotaceae within the polyphyletic pleurotoid-lentinoid fungi. Mycologia 92: 241–252

    Article  Google Scholar 

  • Thorn RG, Reddy CA, Harris D, Paul EA (1996) Isolation of saprophytic basidiomycetes from soil. Appl Environ Microbiol 62: 4288–4292

    PubMed  CAS  Google Scholar 

  • Valinsky L, Vedova GD, Jiang T, Borneman J (2002). Oligonucleotide fingerprinting in rRNA genes for analysis of fungal community composition. Appl Environ Microbiol 68: 5999–6004

    Article  PubMed  CAS  Google Scholar 

  • Villa-Carvajal M, Querol A, Belloch C (2006) Identification of species in the genus Pichia by restriction of internal transcribed spacer (ITS1 and ITS2) and the 5.8S ribosomal DNA gene. Antonie van Leeuwenhoek 90: 171–181

    Article  PubMed  CAS  Google Scholar 

  • Weider LJ, Elser JJ, Crease TJ, Mateos M, Cotner JB (2005) The functional significance of ribosomal (r)DNA variation: Impacts on the evolutionary ecology of organisms. Annu Rev Ecol Evol Syst 36: 219–242

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, MA, Gelfand DH, Sninsky JJ, White TJ (Hrsg) PCR protocolls – A guide to methods and applications, Acad Press, San Diego New York Boston, S 315–322

    Google Scholar 

  • Wuczkowski M, Druzhinina I, Gherbawy Y, Klug B, Prillinger H (2003) Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain forest. Microbiol Res 158: 125–133

    Article  PubMed  CAS  Google Scholar 

  • Wuczkowski M, Prillinger H (2004) Molecular identification of yeasts from soil of the alluvial forest national park along the river Danube downstream of Vienna, Austria (Nationalpark Donauauen). Microbiol Res 159: 263–275

    Article  PubMed  CAS  Google Scholar 

  • Wuczkowski M, Metzger E, Sterflinger K, Prillinger H (2005). Diversity of yeasts isolated from litter and soil of different natural forest sites in Austria. Die Bodenkultur 56: 201–208

    CAS  Google Scholar 

  • Xu J, Cheng M, Tan Q, Pan Y (2005) Molecular population genetics of basidiomycete fungi. In: Xu J (Hrsg) Evolutionary Genetics of fungi, Horizon Bioscience, Wymondham, UK, S 189–220

    Google Scholar 

  • Zak JC, Visser S (1996) An appraisal of soil fungal biodiversity: The crossroads between taxonomic and functional biodiversity. Biodiv Conserv 5: 169–183

    Article  Google Scholar 

  • Zeyl C (2005) Rates and effects of spontaneous mutations in fungi. In: Xu J (Hrsg) Evolutionary Genetics of fungi, Horizon Bioscience, Wymondham, UK, S 289–320

    Google Scholar 

  • Zhou Z, Takaya N, Nakamura A, Yamaguchi M, Takeo K, Shoun H (2002) Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. J Biol Chem 277: 1892–1896

    Article  PubMed  CAS  Google Scholar 

  • Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107: 1451–1466

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Diversität und Funktionen von Pilzen in Böden. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_8

Download citation

Publish with us

Policies and ethics