Skip to main content

Horizontaler Gentransfer: Sex in Böden?

  • Chapter
Mikrobiologie von Böden

Part of the book series: Springer-Lehrbuch ((SLB))

  • 10k Accesses

Zusammenfassung

In der Sexualität von Eukaryoten erfolgt die Neukombination von Genen durch Gametenkopulation (Gametogamie mit Plasmogamie und Karyogamie) und anschließende Meiose (Reduktionsteilung). Gen-Übertragung bei geschlechtlicher Fortpflanzung wird als vertikaler Gentransfer bezeichnet. In Prokaryoten (Bacteria und Archaea) findet die Rekombination von genetischem Material jedoch ohne diese Sexualität statt. Dennoch kann genetisches Material durch mehrere Übertragungsund Rekombinationsmechanismen ausgetauscht werden (Parasexualität). Eine Übertragung von Genen außerhalb der geschlechtlichen Fortpflanzung über Artgrenzen hinweg wird bei Prokaryoten horizontaler oder lateraler Gentransfer genannt (HGT bzw. LGT). Auf parasexuellem Wege können Erbanlagen von Prokaryoten durch Mechanismen wie Transformation, Konjugation und Transduktion sowohl auf artverwandte als auch auf genetisch weit entfernte Prokaryoten übertragen werden. Auch Echte Pilze und Hefen können auf asexuellem Wege genetisches Material rekombinieren und auf artverwandte Organismen übertragen, wenngleich dem HGT bei anamorphen filamentösen Pilzen (ohne bekannte geschlechtliche Vermehrungsformen) bisher eine geringe Bedeutung beigemessen wird. Hingegen scheint die genetische Variabilität bei diesen Pilzen durch transponierbare Elemente sowie durch Heterokaryonbildung als Folge von Anastomosen (vegetative Fusion zweier Hyphenspitzen) weit verbreitet zu sein (Kap. 8). Echte Pilze (in Form von Protoplasten) lassen sich allerdings durch künstliche Transformation leicht genetisch verändern (Fincham 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adamo JA, Gealt MA (1996) A demonstration of bacterial conjugation within the alimentary canal of Rhabditis nematodes. FEMS Microbiol Ecol 20: 15–22

    Article  CAS  Google Scholar 

  • Auchtung JM, Lee CA, Monson RE, Lehman AP, Grossman AD (2005) Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc Nat. Acad Sci USA 102: 12554–12559

    Article  PubMed  CAS  Google Scholar 

  • Barkay T, Smets BF (2005) Horizontal gene flow in microbial communities. ASM News 71: 412–419

    Google Scholar 

  • Battermann A (2002) Charakterisierung von Plasmiden aus einer Gemeinschaft von Bodenbakterien mit dem Schwerpunkt auf dem genetischen Potenzial für konjugativen DNA-Transfer. Dissertation, Universität Bielefeld

    Google Scholar 

  • Bertholla F, Simonet P (1999) Horizontal gene transfer in the environment: Natural transformation as a putative process for gene transfer between transgenic plants and microorganisms. Res Microbiol 150: 375–384

    Article  Google Scholar 

  • Broothaerts W, Mitchel HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodriguez, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433: 629–633

    Article  PubMed  CAS  Google Scholar 

  • Bruisma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37: 329–337

    Google Scholar 

  • Burrus V, Pavlovic G, Decaris B, Guédon G (2002) Conjugative transposons: The tip of the iceberg. Mol Microbiol 46: 601–610

    Article  PubMed  CAS  Google Scholar 

  • Cohen MB, Gould F, Bentur JS (2000) Bt-rice: Practical steps to sustainable use. Intern Rice Res Notes 25: 4–10

    Google Scholar 

  • Daane LL, Molina JAE, Berry EC, Sadowsky MJ (1996) Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria. Appl Environ Microbiol 62: 515–521

    PubMed  CAS  Google Scholar 

  • Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320: 100–103

    Article  PubMed  CAS  Google Scholar 

  • De Rore H, Demolder K, De Wilde K, Houwen F, Verstraete W (1994) Transfer of the catabolic plasmid RP4:Tn4371 to indigenous soil bacteria and its effect on respiration and biphenyl breakdown. FEMS Microbiol Ecol 15: 71–77

    Article  CAS  Google Scholar 

  • D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311: 374–377

    Article  PubMed  Google Scholar 

  • Daane LL, Molina JAE, Berry EC, Sadowsky K (1996) Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria. Appl Environ Microbiol 62: 515–521

    PubMed  CAS  Google Scholar 

  • De Vries J, Heine M, Harms K, Wackernagel W (2003) Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific bio-monitoring using natural transformation of an Acinetobacter sp. Appl Environ Microbiol 69:

    Google Scholar 

  • De Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195: 211–215

    Article  PubMed  Google Scholar 

  • De Vries J, Wackernagel W (2004) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266: 91–104

    Article  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (1999) Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol Fertil Soils 29: 221–245

    Article  Google Scholar 

  • Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53: 217–244

    Article  PubMed  CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol Ecol 38: 1–9

    Article  CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J Environ Qual 33: 806–815

    Article  PubMed  CAS  Google Scholar 

  • Ehlers LJ (2000) Gene transfer in biofilms. In: Allison DG, Gilbert P, Pappin-Scott HM, Wilson M (Hrsg) Community structure and co-operation in biofilms. The Society for General Microbiology, Cambridge University Press, Cambridge S 216–256

    Google Scholar 

  • Fang M, Kremer R, Motavalli PP, Davis G (2005) Bacterial diversity in rhizospheres of nontransgenic and transgenic corn. Appl Environ Microbiol 71: 4123–4136

    Google Scholar 

  • Fang M, Motavalli PP, Kremer RJ, Nelson KA (2007) Assessing changes in soil microbial communities and carbon mineralization in Bt and non-Bt corn residue-amended soils. Appl Soil Ecol 37: 150–160

    Article  Google Scholar 

  • Fincham JRS (1989) Transformation in fungi. Microbiol Rev 53: 148–170

    PubMed  CAS  Google Scholar 

  • Fischer R (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7: 152–158

    Article  PubMed  CAS  Google Scholar 

  • Frost LS (1992) Bacterial conjugation: Everybody’s doin’it. Can J Microbiol 38: 1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: The agents of open source evolution. Nature Rev Microbiol 3: 722–732

    Article  CAS  Google Scholar 

  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol Ecol 28: 261–272

    Article  CAS  Google Scholar 

  • Gogarten JP,Townsend JP(2005) Horizontal gene transfer, genome innovation and evolution. Nature Rev Microbiol 3: 679–739

    Article  CAS  Google Scholar 

  • Ghosh D, Roy K, Williamson KE, White DC, Wommack KE, Sublette KL, Radosevich M (2008) Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl Environ Microbiol 74: 495–502

    Article  PubMed  CAS  Google Scholar 

  • Griffith BS, Caul S, Thomson J, Birch ANE, Scrimgeour C, Andersen MN, Cortet J, Messean A etc. (2005)Acomparison of soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis Cry1Ab toxin. Plant Soil 275: 135–146

    Article  Google Scholar 

  • Haagensen JAJ, Hansen SK, Johansen T, Molin S (2002) In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol Ecol 42: 261–268

    Article  PubMed  CAS  Google Scholar 

  • Henschke RB, Schmidt FRJ (1990) Plasmid mobilization from genetically engineered bacteria to members of the indigenous soil microflora in situ. Curr Microbiol 20: 105–110

    Article  CAS  Google Scholar 

  • Hoffmann A, Thimm T, Dröge M, Moore ERM, Munch JC, Tebbe CC (1998) Intergeneric transfer of conjugative and mobilizable plasmids harboured by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl Environ Microbiol 64: 2652–2659

    PubMed  CAS  Google Scholar 

  • Hirsch PR (2004) Release of transgenic bacterial inoculants – rhizobia as a case study. Plant Soil 266: 1–10

    Article  CAS  Google Scholar 

  • Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt-crops in soil ecosystems. Soil Biol Biochem 40: 559–586

    Article  CAS  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indicators 8: 1–13

    Article  CAS  Google Scholar 

  • Kooning EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: Quantification and classification. Annu Rev Microbiol 55: 709–742

    Article  Google Scholar 

  • Lagido C, Wilson IJ, Glover LA, Prosser JI (2003) A model for bacterial conjugal transfer on solid surfaces. FEMS Microbiol Ecol 44: 67–78

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Zeng Q, Yan F, Xu H, Xu C (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271: 1–13

    Article  CAS  Google Scholar 

  • Liu W, Lu HH, Wu W, Wei QK, Chen YX, Thies JE (2008) Transgenic Bt-rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol Biochem 40: 475–486

    Article  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58: 563–6021

    PubMed  CAS  Google Scholar 

  • Ma JKC (2005) Plant-derived pharmaceuticals – the road forward. Trends Plant Sci 10: 580–585

    Article  PubMed  CAS  Google Scholar 

  • Manachini B, Lozzia GC (2002) First investigations into the effects of Bt-corn crop on nematofauna. Boll Zool Agr Bachic Ser II 34:85–96

    Google Scholar 

  • Marsch P, Wellington EMH (1994) Phage-host interactions in soil. FEMS Microbiol Ecol 15: 99–107

    Article  Google Scholar 

  • Meier P, Wackernagel W (2003) Mechanisms of homologyfacilitated illegitimate recombination for foreign DNAacquisition in transformable Pseudomonas stutzeri. Mol Microbiol 48: 1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Mercier A, Kay E, Simonet P (2006) Horizontal gene transfer by natural transformation in soil environment. In: Nannipieri P, Smalla K (Hrsg) Nucleic acids and proteins in soil, Springer, Berlin Heidelberg, S 356–373

    Google Scholar 

  • Motavelli PP, Kremer RJ, Fang M, Means NE (2004) Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations. J Environ Qual 33: 816–824

    Article  Google Scholar 

  • Muchaonyerwa P, Waladde S, Nyamugafata P, Mpepereki S, Ristori GG (2004) Persistence and impact on microorganisms of Bacillus thuringiensis proteins in some Zimbabwean soils. Plant Soil 266: 41–46

    Article  CAS  Google Scholar 

  • Musovic S, Oregaard G, Kroer N, Sörensen SJ (2006) Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gramnegative bacteria indigenous to the barley rhizosphere. Appl Environ Microbiol 72: 6687–6692

    Article  PubMed  CAS  Google Scholar 

  • Nap JP, Metz PLJ, Escaler M, Conner AJ (2003) The release of genetically modified crops into the environment. The Plant J 33: 1–18

    Article  Google Scholar 

  • Nielsen KM, Bones AM, Smalla K, van Elsas DJ (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria – a rare event? FEMS Microbiol Rev 22: 79–103

    PubMed  CAS  Google Scholar 

  • Nielsen KM, Johnsen P, van Elsas DJ (2007) Horizontal gene transfer and microevolution in soil. In: Van Elsas, DJ, Jansson JK, Trevors JT (Hrsg) Modern soil microbiology, 2. Aufl., CRC Press, Boca Raton London New York, S 55–82

    Google Scholar 

  • Nielsen KM, Townsend JP (2004) Monitoring and modelling horizontal gene transfer. Nature Biotechnol 22: 1110–1114

    Article  CAS  Google Scholar 

  • Ottow JCG (1997) Abbaukinetik und Persistenz von Fremdstoffen in Böden. In: Ottow JCG, Bidlingmaier W (Hrsg) Umweltbiotechnologie, G. Fischer, Stuttgart, S 97–138

    Google Scholar 

  • Paget E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. Eur J Soil Biol 34: 81–88

    Article  CAS  Google Scholar 

  • Preston GM, Studholme DJ, Caldelari I (2005) Profiling the secretomes of plant pathogenic proteobacteria. FEMS Microbiol Rev 29: 331–360

    PubMed  CAS  Google Scholar 

  • Richaume A, Smit E, Faurie G, van Elsas DJ (1992) Influence of soil type on the transfer of plasmif RP4p from Pseudomonas fluorescens to introduced recipient and to indigenous bacteria. FEMS Microb Ecol 101: 281–291

    Article  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature Biotechnol 24: 63–71

    Article  CAS  Google Scholar 

  • Russell PJ (2006) Genetics: A molecular approach, 2. Aufl. Pearson, San Francisco

    Google Scholar 

  • Sanvido O, Stark M, Romeis J, Bigler F (2006) Ecological impacts of genetically modified crops. ART (Agroscope Reckenholz-Tänikon)-Schriftenreihe 1: 1–80

    Google Scholar 

  • Saxena D, Stotzky G (2001) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria and fungi in soil. Soil Biol Biochem 33: 1225–1230

    Article  CAS  Google Scholar 

  • Schumann W (1990) Biologie bakterieller Plasmide. Vieweg & Sohn, Braunschweig

    Google Scholar 

  • Schwieger F, Dammann-Kalinowski T, Dresing U, Selbitschka W, Munch JC, Pühler A, Keller M, Tebbe CC (2000) Field lysimeter investigation with luciferase-gene (luc)-tagged Sinorhizobium meliloti strains to evaluate the ecological significance of soil inoculation and a recA-mutation. Soil Biol Biochem 32: 859–868

    Article  CAS  Google Scholar 

  • Selbitschka W, Keller M, Tebbe CC, Pühler A (2003) Freisetzung gentechnisch veränderter Bakterien. Biol in unserer Zeit 33: 162–175

    Article  CAS  Google Scholar 

  • Selbitschka W, Keller M, Miethling-Graff R, Dresing U, Schwieger F, Krahn I, Homann I, Dammann-Kalinowski T, Pühler A, Tebbe CC (2006) Long-term field release of bioluminescent Sinorhizobium meliloti strains to assess the influence of a recA mutation on the strains’ survival. Microbiol Ecol 52: 583–595

    Article  CAS  Google Scholar 

  • Siciliano SD, Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. napus cv. Parkland. FEMS Microbiol Ecol 29: 263–272

    Article  CAS  Google Scholar 

  • Sims SR, Martin JW (1997) Effect of the Bacillus thuringiensis insecticidal proteins CryAb, CryAc, CryIIA and CryIIIA on Folsomia candida and Xenylla grisea (insecta: Collembola). Pedobiologia 41: 412–416

    CAS  Google Scholar 

  • Sims SR, Ream JE (1997) Soil inactivation of the Bacillus thuringiensis subsp. kursaki CryIIA insecticidal protein within transgenic cotton tissue: Laboratory microcosm and field studies. J Agric Food Chem 45: 1502–1505

    Article  CAS  Google Scholar 

  • Smalla K, Heuer H (2006) How to assess the abundance and diversity of mobile genetic elements in soil bacterial communities? In: Nannipieri P, Smalla K (Hrsg) Nucleic acids and proteins in soil, Springer, Berlin Heidelberg, S 313–330

    Chapter  Google Scholar 

  • Sörensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: A critical review. Nature Rev Microbiol 3: 700–740

    Article  Google Scholar 

  • Spök A (2006) Molecular farming on the rise – GMO regulators still walking a tightrope. Trends Biotechnol 25: 74–82

    Article  PubMed  Google Scholar 

  • Swanson MM, Fraser G, Daniell TJ, Gregory PJ, Tallansky M (2009) Viruses in soils: Morphological diversity and abundance in the rhizosphere. Ann Appl Biol 155: 51–60

    Article  Google Scholar 

  • Tapp H, Stotzky G (1998) Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol Biochem 30: 471–476

    Article  CAS  Google Scholar 

  • Thimm T, Hoffmann A, Fritz I, Tebbe CC (2001) Contribution of the earthworm Lumbricus rubellus (Annelida, Oligochaeta) to the establishment of plasmids in soil bacterial communities. Microbiol Ecol 41: 341–351

    CAS  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Rev Microbiol 3: 711–718

    Article  CAS  Google Scholar 

  • Top EM, Springael D, Boon N (2002) Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 42: 190–208

    Google Scholar 

  • Trevors JT, van Elsas JD (1997) Microbial interactions in soil. In: Van Elsas JD, Trevors JT, Wellington EMH (Hrsg) Modern soil microbiology, Marcel Dekker, New York Basel, S 215–244

    Google Scholar 

  • Van Elsas JD (1992) Antibiotic resistance gene transfer in the environment: An overview. In: Wellington EMH, van Elsas DJ (Hrsg) Genetic interactions among microorganisms in the natural environment, Pergamon, Oxford, S 17–39

    Google Scholar 

  • Van Elsas JD, Bailey MJ (2002) The ecology of transfer of mobile genetic elements. FEMS Microbiol Ecol 42: 187–197

    PubMed  Google Scholar 

  • Van Elsas JD, Fry JC, Hirsch P, Molin S (2000) Ecology of plasmid transfer and spread. In: Thomas CM (Hrsg) The horizontal gene pool: Bacterial plasmids and gene spread, Harwood Scientific Publ, Amsterdam, S 175–206

    Google Scholar 

  • Van Elsas DJ, Turner S, Trevors JT (2006) Bacterial conjugation in soil. In: Nannipieri P, Smalla K (Hrsg) Nucleic acids and proteins in soil, Springer, Berlin Heidelberg, S 331–353

    Chapter  Google Scholar 

  • Van Veen J, van Overbeek LS, van Elsass DJ (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61: 121–135

    PubMed  Google Scholar 

  • Vionis AP, Katsifas EA, Karagouni AD (1998) Survival, metabolic activity and conjugative interactions of indigenous and introduced streptomycete strains in soil microcosms. Antonie van Leeuwenhoek 73: 103–115

    Article  PubMed  CAS  Google Scholar 

  • Wackernagel W (2006) The various sources and fate of nucleic acids in soil. In: Nannipieri P, Smalla K (Hrsg) Nucleic acids and proteins in soil, Springer, Berlin Heidelberg, S 117–135

    Chapter  Google Scholar 

  • Wandeler H, Bahylova J, Nentwig W (2002) Consumption of two Bt- and six non-Bt-corn varieties by the woodlouse Porcellio scaber. Basic Appl Ecol 3: 357–365

    Article  CAS  Google Scholar 

  • Weaver M, Vedenyapina E, Kenerley CM (2005) Fitness, persistence, and responsiveness of a genetically engineered strain of Trichoderma virens in soil. Appl Soil Ecol 29: 125–134

    Article  Google Scholar 

  • Wenzel G (2006) Molecular plant breeding: Achievements in green biotechnology and future perspectives. Appl Microbiol Biotechnol 70: 642–650

    Article  PubMed  CAS  Google Scholar 

  • Wuertz S, Mergeay M (1997) The impact of heavy metals on soil microbial communities and their activities. In: Van Elsas JD, Trevors JT, Wellington EMH (Hrsg) Modern soil microbiology, Marcel Dekker, New York Basel, S 607–664

    Google Scholar 

  • Zwahlen C, Hilbeck A, Gugerli P, Nentwig W (2003) Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol Microbiol 12: 765–775

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Horizontaler Gentransfer: Sex in Böden?. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_5

Download citation

Publish with us

Policies and ethics