Skip to main content

Ökophysiologie der Bodenbakterien und -pilze

  • Chapter
Mikrobiologie von Böden

Part of the book series: Springer-Lehrbuch ((SLB))

  • 10k Accesses

Zusammenfassung

Die mikrobiellen Stoffwechselprozesse des Abbaus (Katabolismus oder Energiestoffwechsel) in Böden sind gekennzeichnet durch eine Vielfalt an Wasserstoff(Elektronen)-Donatoren (organische und anorganische Substrate) und Wasserstoff(Elektronen)-Akzeptoren (organische und anorganische e-Akzeptoren). Im Stoffwechsel sind Oxidationen mit der Abgabe von Wasserstoff bzw. Elektronen verbunden, die dabei auf einen Akzeptor im oxidierten Zustand übertragen werden (Thauer et al. 1977; McGill 2007). Dieser wird somit reduziert (Redoxreaktionen). Zweck dieser Redox-Prozesse ist die Konservierung von Energie (ATP-Synthese) im Energiestoffwechsel und ihre Bereitstellung im Baustoffwechsel (Anabolismus) (Abb. 3.1). Die verschiedenen Stoffwechselwege stellen einerseits die Vorstufen (Metabolite) für die Syntheseprozesse zur Verfügung, andererseits liefern sie Energie (Reduktionsäquivalente, ATP) für lebenswichtige Vorgänge. Der Energiestoffwechsel ist ein exergones Redox-System (wobei Energie frei wird) und besteht dazu aus Elektronen abgebenden und aufnehmenden Reaktionen, die durch Elektronenträger (Carrier) gekoppelt sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alexander M (1994) Biodegradation and bioremediation, Academic Press, San Diego New York

    Google Scholar 

  • Andreoni V, Gianfreda L (2007) Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 76: 287–308

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microb Rev 30: 215–242

    Article  CAS  Google Scholar 

  • Blondeau R (1989) Biodegradation of natural and synthetic humic acids by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 55: 1282–1285

    PubMed  CAS  Google Scholar 

  • Boyd DR, Sharma ND, Allen CCR (2001) Aromatic dioxygenases: Molecular biocatalysis and applications. Curr Opin Biotechnol 12: 564–573

    Article  PubMed  CAS  Google Scholar 

  • Carmonba M, Diaz E (2005) Iron-reducing bacteria unravel novel strategies for anaerobic catabolism of aromatic compounds. Mol Microbiol 58: 1210–1215

    Article  Google Scholar 

  • Cases H, de Lorenzo V (2005) Genetically modified organisms for the environment: Stories of success and failure and what we have learned from them. Intern Microbiol 8: 213–222

    CAS  Google Scholar 

  • Cervantes FJ, Dijksma W, Duong-Dac T, Ivanova A, Lettinga G, Field JA (2001) Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl Environ Microbiol 67: 4471–4478

    Article  PubMed  CAS  Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179: 145–150

    PubMed  CAS  Google Scholar 

  • Claus H, Decker H (2006) Bacterial tyrosinases. System Appl Microbiol 29: 3–14

    Article  CAS  Google Scholar 

  • Colberg PJS, Young LY (1995) Anaerobic degradation of nonhalogenated homocyclic aromatic compounds coupled with nitrate, iron, or sulfate reduction. In: Young LY, Cerniglia CE (Hrsg) Microbial transformation and degradation of toxic organic chemical, Wiley-Liss, New York, S 307–330

    Google Scholar 

  • Decker K, Jungermann K, Thauer RK (1970) Wege der Energiegewinnung in Anaerobiern. Angew Chem 82: 153–173

    Article  Google Scholar 

  • Denef VJ, Klappenbach JA, Patrauchan MA, Florizone C, Rodrigues JLM, Tsoi TV, Verstraete W, Eltis LD, Tiedje JM (2006) Genetic and genomic insights into the role of benzoate-catabolic pathway redundance in Burkholderia xenovorans LB400. Appl Environ Microbiol 72: 585–595

    Article  PubMed  CAS  Google Scholar 

  • El Azhari N, Bru D, Sarr A, Martin-Laurent F (2008) Estimation of the density of the protocatechuate-degrading bacterial community in soil by real-time PCR. Eur J Soi Sci 59: 665–673

    Article  Google Scholar 

  • Elshahed MS, McInerney MJ (2001) Benzoat fermentation by the anaerobic bacterium Synthrophus aciditrophicus in the absence of hydrogen-using microorganisms. Appl Ernviron Microbiol 67: 5520–5525

    Article  CAS  Google Scholar 

  • Fedorak PM, Westlake DWS (1986) Fungal metabolism of n-alkylbenzenes. Appl Environ Microbiol 51: 435–437

    PubMed  CAS  Google Scholar 

  • Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56: 345–369

    Article  PubMed  CAS  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11: 236–243

    Article  PubMed  CAS  Google Scholar 

  • Gök M, Ottow JCG (1988) Effect of cellulose and straw incorporation in soil on total denitrification and nitrogen immobilization at initially aerobic and permanent anaerobic conditions. Biol Fertil Soils 5: 317–322

    Article  Google Scholar 

  • Gunsch CK, Kinney KA, Szaniszlo PJ, Whitman CP (2006) Quantification of homogentisate-1,2-dioxygenase expression in a fungus degrading ethylbenzene. J. Microbiol Meth 67: 257–265

    Article  CAS  Google Scholar 

  • Haider K (1996) Biochemie des Bodens, Enke, Stuttgart

    Google Scholar 

  • Haider KM, Martin JP (1988) Mineralization of 14 C-labelled humic acids and of humic acid bound 14 C-xenobiotics by Phanerochaete chrysosporium. Soil Biol Biochem 20: 425–429

    Article  CAS  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enz Microbiol Technol 30: 445–453

    Article  CAS  Google Scholar 

  • Heider J, Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243: 577–596

    Article  PubMed  CAS  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54: 1612–1614

    PubMed  CAS  Google Scholar 

  • Hofrichter M (2002) Lignin conversion by manganese peroxidase (MnP). Enz Microb Technol 30: 454–466

    Article  CAS  Google Scholar 

  • Hong Y, Xu M, Guo J, Xu Z, Chen X, Sun G (2007) Respiration and growth of Shewanella decolorationis S12 with azo-compounds as the sole electron acceptor. Appl Environ Microbiol 73: 64–72

    Article  PubMed  CAS  Google Scholar 

  • Kanupuli U, Grieler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 10: 1703–1712

    Article  Google Scholar 

  • Kazumi J, Häggblom MM, Young LY (1995) Degradation of monochlorinated and nonchlorinated aromatic compounds under iron-reducing conditions. Appl Environ Microbiol 61: 4069–4073

    PubMed  CAS  Google Scholar 

  • Knackmuss HJ (1997) Abbau von Natur- und Fremdstoffen. In: Ottow JCG, Bidlingmaier W (Hrsg) Umweltbiotechnologie, Fischer, Stuttgart, S 39–80

    Google Scholar 

  • Langenhoff AAM, Brouwers-Ceiler DL, Engelberting JHL, Quist JJ, Wolkenfelt JGPN, Zehnder AJB, Schraa G (1997) Microbial reduction of manganese coupled to toluene oxidation. FEMS Microbiol Ecol 22: 119–127

    Article  CAS  Google Scholar 

  • Lengeler JW, Drews G, Schlegel HG (1999) Biology of the prokaryotes, Thieme, Stuttgart New York

    Google Scholar 

  • Leuing KT, Nandakumar K, Sreekumari K, Lee H, Trevors JT (2007) Biodegradation and bioremediation of organic pollutants in soil. In: Elsas van DJ, Jansson JK, Trevors JT (Hrsg) Modern soil microbiology, 2. Aufl. CRC, Boca Raton London New York, S 522–551

    Google Scholar 

  • Lin WC, Coppi MV, Lovley DR (2004) Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70: 2525–2528

    Article  PubMed  CAS  Google Scholar 

  • Lodry KL, Fedorak PM, Suflita JM (1997) Anaerobic degradation of m-cresol by a sulfate-reducing bacterium. Appl Environ Microbiol 63: 3170–3175

    Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55: 259–287

    PubMed  CAS  Google Scholar 

  • Lovley DR, Coates JD, Woodward JC, Philips EJP (1995) Benzene oxidation coupled to sulfate reduction. Appl Environ Microbiol 61: 953–958

    PubMed  CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Philips EJP, Woodward JC (1996a) Humic substances as electron acceptors for microbial respiration. Nature 382: 445–448

    Article  CAS  Google Scholar 

  • Lovley DR,Woodward JC, Chapelle FH (1996b) Rapid anaerobic benzene oxidation with a variety of chelated Fe(III)-forms. Appl Environ Microbiol 62: 288–291

    CAS  Google Scholar 

  • Lützow M von, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci 57: 426–445

    Article  Google Scholar 

  • Martinez AT, Speranza M, Ruiz-Duenas FJ, Camarero S, Guillen F et al. (2005) Biodegradation of lignocellulosis: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Intern Microbiol 8: 195–204

    CAS  Google Scholar 

  • McGill WB (2007) The physiology and biochemistry of soil organisms. In: Paul EA (Hrsg) Soil microbiology, ecology, and biochemistry, Academic Press/Elsevier, S 231–256

    Google Scholar 

  • Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76: 741–752

    Article  PubMed  CAS  Google Scholar 

  • Nealson KH, Belz A, McKee B (2002) Breathing metals as a way of life: Geobiology in action. Antonie van Leeuwenhoek 81: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Ottow JCG (1997) Abbaukinetik und Persistenz von Fremdstoffen in Böden. In: Ottow JCG, Bidlingmaier W (Hrsg) Umweltbiotechnologie, Fischer, Stuttgart, S 98–138

    Google Scholar 

  • Ottow JCG, Fabig W (1985) Influence of oxygen aeration on denitrification and redox level in different batch cultures. In: Caldwell DE, Brierley JA, Brierley CL. Planetary ecology, Van Nostrand Reinhold, New York, S 427–441

    Google Scholar 

  • Palleroni NJ (1997) Prokaryotic diversity and the importance of culturing. Antonie van Leeuwenhoek 72: 1–19

    Article  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292: 504–505

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Widdel F (1996) Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil. Appl Environ Microbiol 62: 1238–1241

    PubMed  CAS  Google Scholar 

  • Reineke W, Schlömann M (2007) Umweltmikrobiologie, Spektrum Akademischer Verlag/Elsevier, Heidelberg

    Google Scholar 

  • Schöcke L, Schink B (1999) Energetics and biochemistry of fermentative benzoate degradation by Synthrophus gentianae. Arch Microbiol 171: 331–337

    Article  Google Scholar 

  • Smets BF, Yin H, Esteve-Nunez A (2007) TNT biotransformation: When chemistry confronts mineralization. Appl Microbiol Biotechnol 76: 267–277

    Article  PubMed  CAS  Google Scholar 

  • Song B, Ward BB (2005) Genetic diversity of benzoyl coenzyme A reductase genes detected in denitrifying isolates and estuarine sediments communities. Appl Environ Microbiol 71: 2036–2045

    Article  PubMed  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68: 3443–3448

    Article  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180

    PubMed  CAS  Google Scholar 

  • Ulrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64: 271–293

    Article  Google Scholar 

  • Wischgoll S, Heintz D, Peters F, Erxleben A, Sarnighausen E, Reski R, van Dorsselaer A, Boll M (2005) Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 58: 1238–1252

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Fries MR, Chee-Sanford JC, Tiedje JM (1995) Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcus tolulyticus sp. nov. Intern J Syst Bacteriol 45: 500–506

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Ökophysiologie der Bodenbakterien und -pilze. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_3

Download citation

Publish with us

Policies and ethics