Skip to main content

Funktionen und Quantifizierung der mikrobiellen Biomasse in Böden

  • Chapter
Mikrobiologie von Böden

Part of the book series: Springer-Lehrbuch ((SLB))

  • 10k Accesses

Zusammenfassung

Die mikrobielle Biomasse (MB) umfasst jenen Anteil der organischen Bodensubstanz, der aus lebenden Mikroorganismen besteht. Diese organische Fraktion beinhaltet Prokaryoten (Bacteria und Archaea), Pilze (einschließlich Schleimpilze und Pseudofungi), Protozoen und einige kleine Formen unter den frei lebenden Nematoden. Die quantitative Erfassung der MB ist von großer Bedeutung, da die Mikroorganismen – insbesondere die Prokaryoten und Echten Pilze – in Böden sehr verschiedene, aber essenzielle Funktionen und Aktivitäten übernehmen (Tabelle 2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alef K (1991) Methodenhandbuch Bodenmikrobiologie, Ecomed, Landsberg

    Google Scholar 

  • Alef K, Kleiner D (1989) Rapid and sensitive determination of microbial activity in soils and in soil aggregates by dimethylsulphoxid reduction. Biol Fertil Soils 8: 349–355

    Article  CAS  Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press, London

    Google Scholar 

  • Alvarez R, Santanatoglia OJ, Garcia R (1995) Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems. Biol Fertil Soils 19: 227–230

    Article  Google Scholar 

  • Anderson J, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10: 215–221

    Article  CAS  Google Scholar 

  • Bailey VL, Peacock AD, Smith JL, Bolton H (2002) Relationship between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biol Biochem 34: 1385–1389

    Article  CAS  Google Scholar 

  • Beck T, Jörgensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29: 1023–1032

    Article  CAS  Google Scholar 

  • Bloem J, Bolhuis PR, Veninga MR, Wieringa J (1995) Microscopic methods for counting bacteria and fungi in soil. In: Alef K, Nannipieri P (Hrsg) Methods in applied soil microbiology and biochemistry, Academic Press, London, S 162–173

    Google Scholar 

  • Brookes PC (2001) The soil microbial biomass: Concepts, measurement and applications in soil ecosystem research. Microb Environ 16: 131–140

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17: 837–842

    Article  CAS  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14: 319–321

    Article  CAS  Google Scholar 

  • Chen GC, He ZL(2004) Determination of soil microbial biomass phosphorus in acid red soils from southern China. Biol Fertil Soils 39: 446–451

    Article  CAS  Google Scholar 

  • Diaz-Ravina M, Acea MJ, Carballas T (1995) Seasonal changes in microbial biomass and nutrient flush in forest soils. Biol Fertil Soils 19: 220–226

    Article  Google Scholar 

  • Dilly O (2006) Ratios of microbial biomass estimates to evaluate microbial physiology in soil. Biol Fertil Soils 42: 241–246

    Article  Google Scholar 

  • Dilly O, Munch JC (1995) Microbial biomass and activities in partly hydromorphic agricultural and forest soils in the Bornhöved lake region of northern Germany. Biol Fertil Soils 19:343–347

    Article  Google Scholar 

  • Dilly O, Munch JC (1998) Ratios between estimates of microbial biomass content and microbial activity in soils. Biol Fertil Soils 27: 374–379

    Article  CAS  Google Scholar 

  • Friedel JK, Ehrmann O, Pferrer M, Stemmer M, Vollmer T, Sommer (2006) Soil microbial biomass and activity: The effect of site characteristics in humid temperate forest ecosystems. J Plant Nutr Soil Sci 169: 175–184

    Article  CAS  Google Scholar 

  • Friedel JK, Fiedler S, Kretzschmar A (2002) Limitations when quantifying microbial carbon and nitrogen by fumigationextraction in rooted soils. Z Pflanzenernähr Bodenk 165: 589–593

    Article  CAS  Google Scholar 

  • Friedel JK, Gabel D (2002) Microbial biomass and microbial C: N ratio in bulk soil and buried bags for evaluating in situ net N mineralization in agricultural soils. J Plant Nutr Soil Sci 164: 673–679

    Article  Google Scholar 

  • Friedel JK, Molter K, Fischer WR (1994) Comparison and improvement of methods for determining soil dehydrogenase activity by using triphenyltetrazolium chloride and iodonitrotetrazolium chloride. Biol Fertil Soils 18: 291–296

    Article  CAS  Google Scholar 

  • Gestel M van, Merckx R, Vlassak K (1996) Spatial distribution of microbial biomass in microaggregates of a silty loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biol Biochem 28:503–510

    Article  Google Scholar 

  • Gianfreda L, Ruggiero P (2006) Enzyme activities in soil. In: Nannipieri P, Smalla K (Hrsg) Nucleic acids and proteins in soil, Springer, Berlin Heidelberg, S 257–311

    Chapter  Google Scholar 

  • Glathe J, Thalmann A (1970) Die mikrobielle Aktivität und ihre Beziehung zu Fruchtbarkeitsmerkmalen einiger Ackerböden unter besonderer Berücksichtigung der Dehydrogenase-Aktivität. Zbl Bakt Abt II 124: 24–36

    CAS  Google Scholar 

  • Govaerts B, Mezzalama M, Unno Y, Sayre KD, Luna-Guido M, Vanherck K, Dendooven L, Deckers J (2007) Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Appl Soil Ecol 37: 18–30

    Article  Google Scholar 

  • Hartmann A, Assmus B, Kirchhof G, Schloter M (1997) Direct approaches for studying soil microbes. In: van Elsas JD, Trevors JT, Wellington EMH (Hrsg) Modern soil microbiology, Marcel Dekker, New York, S 279–309

    Google Scholar 

  • Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: An automated technique based on infra-red gas analysis. Plant Soil 116: 191–195

    Article  Google Scholar 

  • Jenkinson DS (1988) The determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (Hrsg) Advances in nitrogen cycling in agricultural ecosystems, CAB International, Wallingford, S 368–386

    Google Scholar 

  • Jenkinson DS, Brookes PC, Powlson DS (2004) Measuring soil microbial biomass. Soil Biol Biochem 36: 5–7

    Article  CAS  Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: Measurements and turnover. In: Bollag JM, Stotzky G (Hrsg) Soil biochemistry 5, Marcel Dekker, New York, S 415–471

    Google Scholar 

  • Jenkinson DS, Parry LC (1989) The nitrogen cycle in the Broadbalk wheat experiment: A model for the turnover of nitrogen through the soil microbial biomass. Soil Biol Biochem 21:535–541

    Article  Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effect of biocidal treatment on metabolism in soil. V. A method for measuring soil biomass. Soil Biol Biochem 8: 209–213

    Article  CAS  Google Scholar 

  • Jenkinson DS, Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted Classical Experiments. Soil Sci 123: 298–305

    Article  CAS  Google Scholar 

  • Jörgensen RG (1995) Die quantitative Bestimmung der mikrobiellen Biomasse in Böden mit der Chloroform-Fumigations-Extraktions-Methode. Gött Bodenk Ber 104: 1–228

    Google Scholar 

  • Jörgensen RG, Brookes PC (2005) Quantification of soil microbial biomass by fumigation-extraction. In: Margesin R, Schinner F (Hrsg) Soil biologyVol 5, Springer, Berlin Heidelberg, S 282–295

    Google Scholar 

  • Jörgensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169: 295–309

    Article  Google Scholar 

  • Jörgensen RG, Raubuch M, Brandt M (2002) Soil microbial properties down the profile of a black earth buried by colluvium. Z Pflanzenernähr Bodenk 165: 274–280

    Article  Google Scholar 

  • Kaiser EA, Müller T, Jörgensen RG, Insam H, Heinemeyer O (1992) Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol Biochem 24: 675–683

    Article  CAS  Google Scholar 

  • Kandeler E (2007) Physiological and biochemical methods for studying soil biota and their functions. In: Paul EA(Hrsg) Soil microbiology, ecology, and biochemistry, 3. Aufl. Academic Press/Elsevier, S 71–83

    Google Scholar 

  • Kandeler E, Dick RP (2007) Soil Enzymes: Spatial distribution and function in agroecosystems. In: Benckiser G, Schnell S (Hrsg) Biodiversity in agricultural production systems. CRC, Boca Raton, S 263–279

    Google Scholar 

  • Kandeler E, Stemmer M, Gerzabek MH (2005) Role of microorganisms in carbon cycling in soils. In: Buscot F, Varma A (Hrsg) Microorganisms in soils: Roles in genesis and functions. Springer, Berlin Heidelberg, S 139–157

    Chapter  Google Scholar 

  • Kandeler E, Tscherko D, Spiegel H (1999) Long-term monitoring of microbial biomass, N mineralization and enzyme activities of a Chernozem under different tillage management. Biol Fertil Soils 28: 343–351

    Article  CAS  Google Scholar 

  • Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’Donnell AG, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass – a new perspective. Soil Biol Biochem 40: 61–73

    Article  CAS  Google Scholar 

  • Khan KS, Jörgensen RG (2006) Microbial C, N, and P relationships in moisture-stressed soils of Potohar, Pakistan. J Plant Nutr Soil Sci 169: 494–500

    Article  CAS  Google Scholar 

  • Leita L, De Nobili M, Mondini C, Muhlbachova G, Marchiol L, Bragato G, Contin M (1999) Influence of inorganic and organic fertilization on soil microbial biomass, metabolic quotient and heavy metal bioavailability. Biol Fertil Soils 28: 371–376

    Article  CAS  Google Scholar 

  • Lentzsch P, Wieland R, Wirth S (2005) Application of multiple regression and neural network approaches for landscape-scale assessment of soil microbial biomass. Soil Biol Biochem 37: 1577–1580

    Article  CAS  Google Scholar 

  • Li Y, Dick WA, Tuovinen OH (2004) Fluorescence microscopy for visualization of soil microorganisms – a review. Biol Fertil Soils 39: 301–311

    Article  Google Scholar 

  • Lorch HJ, Benckiser G, Ottow JCG (1995) Basic methods for counting microorganisms in soil and water. In: Alef K, Nannipieri P (Hrsg) Methods in applied soil microbiology and biochemistry, Academic Press, London, S 146–161

    Google Scholar 

  • Lorenz K, Kandeler E (2006) Microbial biomass and activities in urban soils in two consecutive years. J Plant Nutr Soil Sci 169: 799–808

    Article  CAS  Google Scholar 

  • Lützow M von (1993) Jahreszeitliche Fluktuation der mikrobiellen Biomasse und ihres Stickstoffgehaltes in konventionell und biologisch-dynamisch bewirtschafteten Parabraunerden der Friedberger Wetterau. Dissertation, Justus-Liebig-Universität, Giessen. Shaker Aachen

    Google Scholar 

  • Lützow M von, Ottow JCG (1994) Einfluss von konventioneller und biologisch-dynamischer Bewirtschaftungsweise auf die mikrobielle Biomasse und deren Stickstoff-Dynamik in Parabraunerden der Friedberger Wetterau. Z Pflanzenernähr Bodenk 157: 359–367

    Article  Google Scholar 

  • Makboul HE, Ottow JCG (1979a) Clay minerals and the Michaelis constant of urease. Soil Biol Biochem 11: 500–513

    Article  Google Scholar 

  • Makboul HE, Ottow JCG (1979b) Michaelis constant (Km) of acid phosphatase as affected by montmorillonite, illite and kaolinite clay minerals. Microb Ecol 5: 207–213

    Article  CAS  Google Scholar 

  • Makboul HE, Ottow JCG (1979c) Alkaline phosphatase activity and Michaelis constant in the presence of different clay minerals. Soil Sci 128: 129–135

    Article  CAS  Google Scholar 

  • Marinari S, Mancinelli R, Campigglia E, Grego S (2006) Chemical and biological indicators of soil quality in organic and conventional farming systems in central Italy. Ecol Indicators 6: 701–711

    Article  Google Scholar 

  • Martens R (1987) Estimation of microbial biomass in soil by respiration method: Importance of soil pH and flushing methods for the measurement of respired CO2. Soil Biol Biochem 19: 77–81

    Article  CAS  Google Scholar 

  • Martens R (1995) Current methods for measuring microbial biomass C in soil: Potentials and limitations. Biol Fertil Soils 19: 87–99

    Article  CAS  Google Scholar 

  • McGill WB, Cannon KR, Robertson JA, Cook FD (1986) Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can J Soil Sci 6: 1–19

    Google Scholar 

  • Mersi von W, Schinner F (1991) An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol Fertil Soils 11: 216–220

    Article  Google Scholar 

  • Meyer K, Jörgensen RG, Meyer B (1996) The effects of reduced tillage on microbial biomass C and P in sandy loss soils. Appl Soil Ecol 5: 71–79

    Article  Google Scholar 

  • Mondini C, Cayuela ML, Sánchez-Monedero MA, Roig A, Brookes PC (2006) Soil microbial biomass activation by trace amounts of readily available substrate. Biol Fertil Soils 42: 542–549

    Article  Google Scholar 

  • Ottow JCG (1982) Bedeutung des Redoxpotentials für die Reduktion von Nitrat und Fe(III)Oxiden in Böden und Gewässern. Z Pflanzenernähr Bodenk 15: 91–93

    Article  Google Scholar 

  • Ottow JCG (1997) Abbaukinetik und Persistenz von Fremdstoffen in Böden. In: Ottow JCG, Bidlingmaier W (Hrsg) Umweltbiotechnologie, Fischer, Stuttgart, S 97–138

    Google Scholar 

  • Ottow JCG, Makboul HE, Munch JC (1983) Einfluss pedogener Tonminerale auf die Kinetik (Km und Vmax) von alkalischer und saurer Phosphatase. Z Pflanzenernähr Bodenk 146: 3–12

    Article  CAS  Google Scholar 

  • Rajbhandari KK, Lorch HJ, Ottow JCG (1995) Dimethylsulphoxidreduktase-Aktivität zur Charakterisierung der mikrobiellen Biomasseaktivität im Schlamm einer belüfteten Abwasserteichanlage. Acta Hydrochim Hydrobiol 23: 97–103

    Article  CAS  Google Scholar 

  • Rangel-Castro JI, Prosser JI, Ostler N, Scrimgeour CM, Killham K, Meharg AA (2005) Flux and turnover of fixed carbon in soil microbial biomass of limed and unlimed plots of an upland grassland ecosystem. Environ Microbiol 7: 544–552

    Article  PubMed  CAS  Google Scholar 

  • Raubuch M, Jörgensen RG (2002) C and N mineralization in a coniferous forest soil: The contribution of the temporal variability of microbial biomass C and N. Soil Biol Biochem 34: 841–849

    Article  CAS  Google Scholar 

  • Ross DJ, Sparling GP (1993) Comparison of methods to estimate microbial C and N in litter and soil under Pinus radiata on a coastal sand. Soil Biol Biochem 11: 1591–1593

    Article  Google Scholar 

  • Sánchez-Monedero MA, Mondini C, Cayuela ML, Roig A, Contin M, De Nobili M (2008). Fluorescein diacetate hydrolysis, respiration and microbial biomass in freshly amended soils. Biol Fertil Soils 44: 885–890

    Article  Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E, Margesin R (1993) Bodenbiologische Arbeitsmethoden, 2. Aufl. Springer, Berlin Heidelberg

    Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E, Margesin R (1995) Methods in soil biology. Springer, Berlin Heidelberg

    Google Scholar 

  • Schinner F, Sonnleitner R (1996) Bodenökologie: Mikrobiologie und Bodenenzymatik, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Smith JL (1994) Cycling of nitrogen through microbial activity. In: Hatfield JL, Stewart BA (Hrsg) Soil biology: Effects on soil quality, CRC, Boca Raton, S 91–119

    Google Scholar 

  • Smith JL, Halvorson JJ, Bolton H (1995) Determination and use of a corrected control factor in the chloroform fumigation method of estimating soil microbial biomass. Biol Fertil Soils 19: 287–291

    Article  Google Scholar 

  • Sparling GP, Feltham CW, Reynolds I, West AW, Singleton P (1990) Estimation of soil microbial C by a fumigation-extraction method: Use of soils with high organic matter content, and reassessment of the kec-factor. Soil Biol Biochem 22: 301–307

    Article  Google Scholar 

  • Suman A, Lal M, Sigh AK, Gaur A (2006) Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agron J 98: 698–704

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring microbial biomass C. Soil Biol Biochem 19: 703–707

    Article  CAS  Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bio-indicator of disturbance and ecosystem development. Soil Biol Biochem 27: 1601–1610

    Article  CAS  Google Scholar 

  • Welp G (1999) Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biol Fertil Soils 30: 132–139

    Article  CAS  Google Scholar 

  • Wilke BM (1991) Effects of single and successive additions of cadmium, nickel and zinc on carbon dioxide evolution and dehydrogenase activity in a sandy luvisol. Biol Fertil Soils 11: 34–37

    Article  CAS  Google Scholar 

  • Witt C, Biker U, Galicia CC, Ottow JCG (2000a) Dynamics of soil microbial biomass and nitrogen availability in a flooded rice soil amended with different C and N sources. Biol Fertil Soils 30: 520–527

    Article  CAS  Google Scholar 

  • Witt C, Cassman KG, Ottow JCG, Biker U (1998) Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management. Biol Fertil Soils 28: 71–80

    Article  CAS  Google Scholar 

  • Witt C, Gaunt JL, Galicia CC, Ottow JCG, Neue HU (2000b) A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soils 30: 510–519

    Article  CAS  Google Scholar 

  • Witter E, Kanal A (1998) Characteristics of the soil microbial biomass in soils from a long-term field experiment with different levels of C input. Appl Soil Ecol 10: 37–49

    Article  Google Scholar 

  • Wu J, Jörgensen RG, Pommerening B, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation extraction – an automated procedure. Soil Biol Biochem 22: 1167–1169

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Funktionen und Quantifizierung der mikrobiellen Biomasse in Böden. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_2

Download citation

Publish with us

Policies and ethics